Arizona Computer Science Standards
June 2018 DRAFT

Arizona Department of Education

High Academic Standards for Students

Contents

RV Lo AT = =T 0 0 =T 3 PP PP 6
TX e Te TUTeid o] o T T T TP TP PP P TP PO PP OPPPPOPRPPON 7
Computer Science Essential CoNCePs aNd SUDCONCEPESoiiiuiiiiiiiiiiie ettt ettt e e e e ettt e e e s bt e e e e eabteeeeabbebeeeeeanbbbeessaabeeeeeaabeaaeesaeannnne 9
CoOMPULET SCIENCE PractiCes fOr STUAENTS.eiiiiiiiiee ettt ettt ettt et e e sttt e e s e bt e e e saabteeeees e e sbbeeesaabbteeseasbbeeeenbbebbbeeesnbeeeeennseeaaennnee 11
How to Read the Arizona COMPULET SCIENCE STANUAINASccovuuiiiiiiiiiie ettt ettt ettt e e s ettt e e e sttt eeesabaeeesasbtaeeseesassbbeeesaabbeeesastaeesansennnnes 14
[T Te 1T =1L (=T o PSP UPT RSP 16
Essential Concept: COMPULING SYSTEIMS (CS)...uuuriiiiiiiiieeiiitieeeitt it e e e ettt e e seteeeeestaaeeeseeeetbaeeeeastaeeeaassseeeass saabaeeeaassaseeaasssseeesansses seeeeanssneesasrenas 16
Essential Concept: Networks and the INTEIMET (NI)eiiiiiiieiiiiee ettt et e st e e e s e e s satteeeessebeeesssbaeesastssbaaeaeansseeessnsbaeessnnssneessesnnnsnes 17
Essential Concept: Data @Nd ANIYSIS (DA) ..ceeueeirieerieeiite ettt e ettt e st e st e ettt e sttt e stbee e eabeeesbaeeseteesabeesabbesaebaeessbeesateesabae e bbeenabeeea sabeeeabaeenareenareens 17
Essential Concept: Algorithms and Programming (AP)oc.ueeeiiiiieeiiiieee e ettt e e sitree e ssbteessssteetreesastaeessasbseeesastsaessaeasssseeessnsseeesanssseessnsssnnne 18
Essential Concept: IMPacts Of COMPULING (1) ...uuiiiiiuriiieiiiiiie et e e e ettt e e ettt e e e ettt e e e eet e etbeeeeeaataeeeaaatseeeeestae aeeeeansasaeaasssseeesanssesesneeansseeeeanssens 20
L A G- o LTRSS PRPRP PRI 22
Essential Concept: COMPULING SYSTEIMS (CS)...uuuiiiiiiiiiieiiiiiie e et ittt e e erbteeessbreeaestreeeeseeesubaeeesatraeeeastseeeesss sasbaeesassseaeasssseeessssseessaeessnssseessnsseens 22
Essential Concept: NetwWorks and the INTEIMET (NI)eiiiiiiiiie ettt e e et e e et e e e s e e esataeaeesttbeeeeeabaeeessstsabaeeaeassbaeessassaeesaanssneassaeasnsees 23
Essential Concept: Data and ANGIYSIS (DA) ...eeiueeiieeeiieerieeeteesesteeeteeesteessseeaseeaseeeessseessseeaseeeasseessseeansnseeessseessseesnsesansesansssessesensnsesanseeenns 2423
Essential Concept: Algorithms and Programming (AP)eccueeeiiriiieeeitee e ereeesteesteesteeessaeessaeesessteessseeessseessseesnseeaseseeessseessseesnsesenseeesssnessnn 2524
Essential Concept: IMPacts Of COMPULING (IC)...eiiurririieiieeeiieesiee e esteesteeerteeesteesteesaeeeessaeessseessseeassesassseess srseessseeesseansseesnsesasenesensseennsenans 2726
Y Tole T3V [] - o [T PSP PP PUPPPTPPPPPPPRPRE 2827
Essential Concept: COMPULING SYSTEIMS (CS)....uuuiiiiiiiieieiiitiieeeiit sttt e e eett e e e e etteeeeesbeeeeseeeebtseeeaastaeaeaassseeeeaas sesbaaeeaassseeeassssesesassessaeasanssseeeannns 2827
Essential Concept: Networks and the INTEINEL (INI) .ec..eeiiieirieeiiee ettt sb e et e sttt e st e sab e s bt e e sbbe e e sabeesabeesbeeesnreesaneeensbreens 2928
Essential Concept: Data @nd ANAIYSIS (DA) ...eeuueerieeiiieeiiterites e stee ettt e sttt e sttt e st e sttt e esateesabeesabeeesabeesabeeaasbeesabaeensbeesabeeeabeeenne e seabeesabeesneeenns 3029

Draft Arizona Computer Science Standards Page 2

Essential Concept:

Essential Concept:

Third Grade...............

Essential Concept:
Essential Concept:
Essential Concept:
Essential Concept:

Essential Concept:

Fourth Grade............

Essential Concept:
Essential Concept:
Essential Concept:
Essential Concept:

Essential Concept:

Fifth Grade................

Essential Concept:
Essential Concept:
Essential Concept:
Essential Concept:

Essential Concept:

Sixth Grade...............

Essential Concept:

Algorithms and Programming (AP)ccuueeieoiiiieeeeiieee e ettt e e ettt e e ettt e e e staeteeeeesabaeeeeesbbaeaeaastseeesaeessseeesssssaeeeenssseeesanssns 3130
IMPACES OF COMPULING (IC)..neiviiiiiiiie ettt ettt ettt e e ettt e e e e et e e eeesataeeeesataeeeeasabaeeesas ssbaaeaeasssaeeesnsbaeeesansans aaaeasraeeens 3331

COMPUEING SYSEEMS (CS)..uvreeuttiruteeetieeittt ettt e st e et e ettt e sttt e sabee st bt e ebbeesabeesabeeaabeeesbte e eeabeeeabeeenbeeesaseesabaesabneseennneesnneennnes 3433
NetWOrks and the INTEINET (N1) ..o ettt e e et e e e e e e ta e e e e e taeeeeeabaae e e eeastbaeeeassaeeesaasasaesansrsnrreeas 3534
Data @Nd ANGIYSIS (DA) ..veieeiiieie et e ettt e e e ettt e e ettt e e e eete e e e e et eetbaeeeeabaeaaeastaeeeaaataee eeeeatbaaaeaaataaaeeataeeaea e eanbaraeaanrraaaaan 3534
Algorithms and Programming (AP)eoouee ittt e ettt ettt ettt sab e e sibee sttt s bb e e sa bt e sabeesbeeesbteesabeesabeeeneeenneeens s 3635
IMPACES OF COMPUELING (1C) ..nuveieiiieitieiiite ettt ettt ettt e st e st e e st e ettt e sbb e e sabeesabteebteesesateesabeesabaesbbeenabeesabeseesasneenanens 3937

COMPUEING SYSTEMS (CS)..uvtteuieeetieeiteeeitteeseeteesteeesteeesueeessteesseee st seeaasseeanseessseeaseeesssaeseansesansesensseesnsnesnsnesnsesseennseennseennses 4139
NetWorks and the INTEINET (N1) ..o ettt e e ettt e e e e e te e e e e e etaeeeeeaabaea e e eeesaseeeeassaeaeaansasaeaansssnnneens 4249
DAata @Nd ANGIYSIS (DA) ..veieeiiiiiieeeiiiee ettt e ee e e ettt e e et e e e e e st taeee e st eetbaeeeeeabaeae e e btaeae e abaeebeee e e bbaeeeaabbteeeabbeeeean e enbaaeeeartreaeaan 4340
Algorithms and Programming (AP)ccuueeiiiiiiieeeeiieee e ettt e e sttt e e ettt e e e estaeteeeeesabaeeeeeabbaeeeaastaseesaeesiaseeesssssaeeeanssseeesanssns 434%
IMPACES OF COMPUEING (IC) . nuitiiiiiiiie ettt ettt rt e e e rte e e e e et bt e e eeeeataeeeesatbeeeeasabaeeeaas sasbaaeeaasssseessnsseeeesassans aaaeasraeeens 4643

COMPUEING SYSTEMS (CS)..urteeutteeitieeteeeitte ettt e st e ettt ettt e st e st e st bt e s bbeesabeesabeeaabeeesbbees e embeeeaseeebeeessseesataeenbneseennneesnneennnes 4845
NetWOorks and the INTEINET (N1) ..ooueiii e et e e et e e e e e esta e e e e e taeeeeeabaae e e eeastsaeeesnsaeeesassaeeeeansrsnrreeas 4946
Data @Nd ANGIYSIS (DA) ..veiieiiiieie et e ettt e e e eect e e ettt e e e eetaee e e et eetbaeeeeabaeaaeastaaaeaaaraee eeeeaabaaeeaaatbeaeeaateeaea e eanbaeaeaantraaaaan 5046
Algorithms and Programming (AP)eoouee it eeieee ettt sttt e sat e e sibee sttt sbe e e sabeesabeeeabeeesbteesabeesabeeeneeenneeens s 5047
IMPACES OF COMPUELING (1C) ..nuvtieiiieiiieiiee ettt ettt ettt e st e e st e ettt e sbb e e sabeesabeeebbeesesabeesabeesabaesbseenabeesabebaesnbneenaneas 5349

COMPUEING SYSTEMS (CS).uvrteurieerieetee ettt esteteesteeesteeesuteesseeesseee et seeasseesnseessseeasseeessaeeseansesansesensseesnseesnsnsessesseennsnennsesnnses 5551

Draft Arizona Computer Science Standards Page 3

Essential Concept:
Essential Concept:
Essential Concept:

Essential Concept:

Seventh Grade..........

Essential Concept:
Essential Concept:
Essential Concept:
Essential Concept:

Essential Concept:

Eighth Grade

Essential Concept:
Essential Concept:
Essential Concept:
Essential Concept:

Essential Concept:

High School

Essential Concept:
Essential Concept:
Essential Concept:
Essential Concept:

Essential Concept:

NetWOorks and the INTEINET (N1) .oooeiiiiiiiee e ettt et e e e e tb e e e e e etb e e e e ebbaee e e eesstbaeeesabaeaeaassaeeeeansresrreeas 5652
Data @Nd ANGIYSIS (DA) ..veiieiiiieie ettt e et e ee e e ettt e e et e e e e e staeee e st eetbaeeeeebaeee e e tbaee e e baeebeee e e baaeeeaattaeeeeaaaeeeean e eabaeeeeantreaaaas 5652
Algorithms and ProgrammMinNg (AP)eeiueeeiieeeeieeitee e erteeesteesteesteeesteeessaeesesstaessseeaasseessseeasseeassseeessseessseeansesansseesssnesssn 5753
IMPACS Of COMPULING (1€) ..nuveieiiieiiieiiee ettt ettt ettt ettt e st e st e ettt e sb b e e sabeesabeeebbee s esbbeesabeesabsesbbeenabeesabeseesnsneenaneas 5955

COMPUEING SYSTEMS (CS)..uttiieiiiieieeiitieee e ettt et eeeet e e e e eiteeeeesteeeeees e eabaeeesaasaseaaassaeeeaassee beaesassaseeaassseseeanssasaeesesassasaeeassrnns 6157
NEtWOorks and the INTEINMET (N1) ..eeiiiiiieeiee ittt ettt ettt e e et e ettt e sbteesab e e sabeesasbbeesabeesabeesabnesnneesaneesenarees 6258
Data @Nd ANGIYSIS (DA) c.ueeeeiiieeiieeeite ettt tee et e ettt e sttt e sat e sate e st bt e e sat e e sab e e et e e e bt e e sab e e s e et et e ba e e bt e e nhteesabeeebbe e e naneenaneenateens 6358
Algorithms and Programming (AP)ccuueeeeiiiiieeeeiieee e ettt e e sttt e e setbaeeeesstaetaeeeessbaeeeesbbaeaeaastsaaasaessssseeesssssseesanssseeessnssns 6359
[0 F= Yot &3 0o 44 o U1 T = |) S 6661

COMPUEING SYSTEMS (CS)..uttiieiiiiiieiiiiiee e et eeteeeesr et e e eeteeeeasttaeeeees s eabaeeeasabaeeeaasssseeesasbee baeesanssaeesanssseeeessbaeeessesnsssneessssrens 6863
NetWOorks and the INTEINET (N1) ..ooeiiiieiiiee e ettt e e e e rtb e e e e e tb e e e e eabaee e e e esstbaeeeaabaeaeaansaeeeeansrenrseeas 6964
Data @Nd ANGIYSIS (DA) ..veiiiiiiieie ettt e ettt et e e ettt e e ettt e e e e s taee e e st e tbaeeeeebaeee e e ttaee e e baeebeeeeatbaaeeattaeeeeabaeeeean e enabaeeeeatreaeaas 7065
Algorithms and ProgrammMinNg (AP)eeiueeeiee et eeitee e erieeesteesteesteeesseeessteeaessteesseeaasseessseeasseeasssaeessseessseeansesensseesssnesnnn 7166
IMPACES OF COMPULING (1C) ..nuveieiiieiieeiiee ettt ettt ettt ettt e st se st e ettt e s bt e e sabeesabe e ettt e eesbbeesabeesabaesbbeenabeesaneseesasneenaneas 7368

COMPUEING SYSTEMIS (CS)..urtiiiiiiiieeiiitite e e ettt et eeeet e e e e eiteeeeesteeeeees e eeabaeeeeaasaseeaasssseeeaassee beaesassaseeanssseseeassasaaesesassasaeeassrens 7570
NEtwOorks and the INTEINMET (N1) ..eeiiiiieeiee et ettt ettt e e et e e bt e e sbbeesabeesabeeeasbbeesabeesabeesabneesneesaneenenasnes 767%
[BEY I aTe N F: 1V 1 (Y O RO PRPOPPP 7772
Algorithms and Programming (AP)ccuueeeeiiiiieeeeitieee oo ettt e e sttt e e sebaeeeestteteeeeesabaeeeesbbaeasaastseaasseesssseeesssssseesanssseeessnssas 7873
(g e F= Yot &3 0o 44 o U1 T = |) R 8075

Draft Arizona Computer Science Standards Page 4

(00T 04T oJU 1 =Y Yol = o Tl €] (o Y- oV A OSSP PUPPPRPPP 8377

0] L=l = o Tol T PSP PSUPPP 9083

Draft Arizona Computer Science Standards Page 5

Vision Statement

WI K-12 Lstudents are expected ko\ develop a foundation of computer science knowledge and learn new approaches to problem solving and
critical hhinking to become \both ethical, responsible users and creators of computing technology to ensure that all students have the basic
knowledge that will allow them to productively participate in the world and make well informed decisions about their Iives.\

\Understanding problems, their potential solutions, and the technologies, techniques, and resources needed to solve them are critical for citizens
of the 21% century. Toward that end, the state of Arizona has created these standards to further this understanding. The standards will allow
students to develop a foundation of computer science knowledge and learn new approaches to problem solving that captures the power of

computational thinking to become both users and creators of computing technology. The computer science standards will empower students to:

0 Beinformed citizens who can critically engage in public discussion on computer science related topics
0 Develop as learners, users, and creators of computer science knowledge and artifacts

0 Better understand the role of computing in the world around them

0 Learn, perform, and express themselves critically in a variety of subjects and interests‘

Equity is of top priority also. This will ensure that all students can engage in the content of the computer science standards with sufficient
flexibility to allow everyone to demonstrate proficiency in multiple ways.

Draft Arizona Computer Science Standards Page 6

Commented [BN1]: Our world is increasingly dependent upon
technology, computers, and the training necessary to compete in a
global digital age. The Nevada K-12 Computer Science Standards
provide the rigor that our students need to become proficient at
problem solving, computational thinking, and innovators of
computational artifacts, rather than just users of them. Computer
Science intersects with every subject area our students will take in
school and every career path they may choose to pursue following
graduation.

[Commented [BN2]: Why italics?

[Commented [BN3]: I'd suggest breaking this sentence into two.

J_

[Commented [BN4]: How does this connect to CS?

Commented [BN5]: | think the vision statement could start
with this paragraph. The one before it is quite vague.

Introduction

Understanding problems and their potential solutions, the technologies, techniques, and resources needed to solve them are critical for citizens
of the 21 century. The state of Arizona has created computer science standards to further this understanding. These standards will allow
students to develop a foundation of computer science knowledge by learning new approaches to problem solving that capture the power of

computational thinking to become both users and creators of computing technology. The computer science standards will empower students to:

0 Beinformed citizens who can critically engage in public discussion on computer science related topics
0 Develop as learners, users, and creators of computer science knowledge and artifacts

0 Better understand the role of computing in the world around them

0 Learn, perform, and express themselves critically in a variety of subjects and interests

With efforts to broaden participation, equity is an important factor across the discipline of computer science. Educators and students who
engage with these standards are encouraged to actively seek collaboration with those who have different perspectives and backgrounds. This
attention to equity serves to strengthen individual communities and prepare students to be informed and responsible users of technology.
Furthermore, the Arizona Computer Science Standards provide flexibility to allow all students to demonstrate proficiency in multiple ways, thus
providing a maximum opportunity for engagement in computer science.

f‘l’he Arizona Computer Science Standards integrate and expand upon computer literacy, educational technology, digital citizenship, information
technology, and computer science. Computer literacy, educational technology, digital citizenship, and information technology are concepts that
students are also exposed to in the Computer Technology Standards of Learning. ‘In many ways, instruction in the computer science standards
will compliment and expound upon, at a deeper level, the concepts and skills covered within the Computer Technology Standards. However,
there are distinct differences between computer technology and computer science.

As the foundation for all computing, computer science is “the study of computers and algorithmic processes, including their principles, their
hardware and software designs, their applications, and their impact on society” (Tucker et. al, 2006, p. 2).

Computer science builds upon the concepts of computer literacy, educational technology, digital citizenship, and information technology. The
differences and relationship with computer science are described below.

Draft Arizona Computer Science Standards Page 7

Commented [BN6]: | think this might confuse people. Instead

of clarifying that CS is not ed tech or computer literacy, this makes
it sound like CS is just another way of covering these same areas. I'd
suggest reworking this section to explain that CS is NOT the same as

these other areas. You could start with the second paragraph.

0 Computer literacyrefers to the general use of computers and programs, such as productivity software. Examples include performing an
Internet search and creating a digital presentation.

0 Educational technologypplies computer literacy to school subjects. For example, students in an English class can use a web-based
application to collaboratively create, edit, and store an essay online.

0 Digital citizenshiprefers to the appropriate and responsible use of technology, such as choosing an appropriate password and keeping it
secure.

0 Information technologyoften overlaps with computer science but is mainly focused on industrial applications of computer science, such

as installing software rather than creating it. Information technology professionals often have a background in computer science.

The previously listed concepts tend to focus more on the using computer technologies as opposed to understanding why they work and how to
create those technologies (K-12 Computer Science Framework, 2016).

Draft Arizona Computer Science Standards Page 8

Computer Science Essential Concepts and Subconcepts

The Arizona Computer Science Standards for grades |kindergarten through twelve\ are organized into five Essential Concepts: Commented [BN7]: Although the AZ standards are broken
down by grade, realistically the standards look essentially the same
0 Computing Systems: This involves the interaction that people have with a wide variety of computing devices that collect, store, analyze, | for all middle school grades, and the same for high school.

and act upon information in ways that can affect human capabilities both positively and negatively. The physical components (hardware)
and instructions (software) that make up a computing system communicate and process information in digital form. An understanding of
hardware and software is useful when troubleshooting a computing system that does not work as intended.

0 Networks and the Internet (with Cybersecurity): This involves the networks that connect computing systems. Computing devices do not
operate in isolation. Networks connect computing devices to share information and resources and are an increasingly integral part of
computing. Networks and communication systems provide greater connectivity in the computing world by providing fast, secure

communication and facilitating innovation. Networking and the Internet mlust also consider‘Cybersecurity. Cybersecurity, also known as Commented [BN8]: Inanimate objects cannot consider. Maybe
information technology security, involves the protection of computers, networks, programs, and data from unauthorized or U UslersEe] Mool e die (e, e mEieks

consider Cybersecurity”
unintentional access, manipulation, or destruction. Many organizations, such as government, military, corporations, financial h
institutions, hospitals, and others collect, process, and store significant amounts of data on computing devices. That data is transmitted
across multiple networks to other computing devices. The confidential nature of government, financial, and other types of data requires
continual monitoring and protection for the sake of continued operation of vital systems and national security.

0 Data and Analysis: This involves the data that exist and the computing systems that exist to process that data. The amount of digital
data generated in the world is rapidly expanding, so the need to process data effectively is increasingly important. Data is collected and
stored so that it can be analyzed to better understand the world and make more accurate predictions.

0 Algorithms and Programming: Involves the use of algorithms. An algorithm is a sequence of steps designed to accomplish a specific task.
Algorithms are translated into programs, or code, to provide instructions for computing devices. Algorithms and programming control all
computing systems, empowering people to communicate with the world in new ways and solve compelling problems. The development
process to create meaningful and efficient programs involves choosing which information to use and how to process and store it,
breaking apart large problems into smaller ones, recombining existing solutions, and analyzing different solutions.

Draft Arizona Computer Science Standards Page 9

0 Impacts of Computing: fThis involves the affect that computing has on daily life. Computing affects many aspects of the world in both
positive and negative ways at local, national, and global levels. Individuals and communities influence computing through their behaviors
and cultural and social interactions, and in turn, computing influences new cultural practices. An informed and responsible person
should understand the social implications of the digital world, including equity and access to computing.

Essential Concepts are categories that represent major content areas in the field of computer science. They represent specific areas of
disciplinary importance rather than abstract, general ideas. Each essential concept is supported by various subconcepts that represent specific
ideas within each essential concept. Figure 1 provides a visual representation of the Essential Concepts and the supporting subconcepts.

Figure 1100mputer science essential concepts and subcon#epts

1 Devices 1
i Hardware and

Software
1 Troubleshooting 1

Networking and

the Internet

Network
Communication
and Organization
Cybersecurity

Draft Arizona Computer Science Standards

= E E]

Data and Analysis

Collection
Storage
Visualization and
Transformation
Inference Models

= =) =) == =

Algorithms
Variables
Control
Modularity
Program
Development

= = =

Culture

Social Interactions
Safety, Law, and
Ethics

Page 10

Commented [BN9]: This should explicitly introduce the ethical
considerations of computer science...particularly privacy.

Commented [BN10]: Some of the terms listed here have not
been introduced prior to this and so may confuse readers. For
example, “Modularity” is listed under algorithms, but not explained
in the prior paragraph.

Computer Science Practices for Students

The content of the Arizona Computer Science Standards is intended to support the following seven practices for students. The practices describe
the behaviors and ways of thinking that computationally literate \students use to fully engage in a data-rich and interconnected world.

(o]

Fostering an Inclusive Computing Culture: Students will develop skills for building an inclusive and diverse computing culture, which
requires strategies for incorporating perspectives from people of different genders, ethnicities, and abilities. Incorporating these
perspectives involves understanding the personal, ethical, social, economic, and cultural contexts in which people operate. Considering
the needs of diverse users during the design process is essential to producing inclusive computational products.

Collaborating Around Computing: Students will develop skills for collaborating around computing. Collaborative computing is the
process of performing a computational task by working in pairs and on teams. Collaborative computing involves asking for the
contributions and feedback of others, effective collaboration can lead to better outcomes than working independently. Collaboration
requires individuals to navigate and incorporate diverse perspectives, conflicting ideas, disparate skills, and distinct personalities.
Students should use collaborative tools to effectively work together and to create complex artifacts.

Recognizing and Defining Computational Problems: Students will develop skills for recognizing and defining computational problems.
The ability to recognize appropriate and worthwhile opportunities to apply computation is a skill that develops over time and is central
to computing. Solving a problem with a computational approach requires defining the problem, breaking it down into parts, and
evaluating each part to determine whether a computational solution is appropriate.

Developing and Using Abstractions: Students will develop skills for developing and using abstractions. Identifying patterns and
extracting common features from specific examples to create generalizations form abstractions. Using generalized solutions and parts of
solutions designed for broad reuse simplifies the development process by managing complexity.

Creating Computational Artifacts: Students will develop skills for creating computational artifacts. The process of developing
computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve computational

Draft Arizona Computer Science Standards Page 11

Commented [BN11]: This phrase sounds more like
computational literacy and less like computer science

problems. Students create artifacts that are personally relevant or beneficial to their community and beyond. Computational artifacts
can be created by combining and modifying existing artifacts or by developing new artifacts. Examples of computational artifacts include
programs, simulations, visualizations, digital animations, robotic systems, and apps.

0 Testing and Refining Computational Artifacts: Students will develop skills for testing and refining computational artifacts. Testing and
refinement is the deliberate and iterative process of improving a computational artifact. This process includes debugging (identifying and
fixing errors) and comparing actual outcomes to intended outcomes. Students also respond to the changing needs and expectations of
end users and improve the performance, reliability, usability, and accessibility of artifacts.

0 Communicating About Computing: Students will develop skills for communicating about computing. Communication involves personal
expression and exchanging ideas with others. In computer science, students communicate with diverse audiences about the use and
effects of computation and the appropriateness of computational choices. Students write clear comments, document their work, and
communicate their ideas through multiple forms of media. Clear communication includes using precise language and carefully
considering possible audiences.

lRegarding the previously listed practicesL computational thinking is integrated throughout each one. Computational thinking is an approach to
solving problems in a way that can be implemented with a computer. It involves the use of concepts, such as abstraction, recursion, and
iteration, to process and analyze data, and to create real and virtual artifacts (Computer Science Teachers Association & Association for
Computing Machinery, 2017). Computational thinking practices such as abstraction, modeling, and decomposition connect with computer
science concepts such as algorithms, automation, and data visualization. Beginning with the elementary school grades and continuing through
grade 12, students should develop a foundation of computer science knowledge and learn new approaches to problem solving that captures the
power of computational thinking to become both users and creators of computing technology. Figure 2 is a visual representation of the essential
practices along with computational thinking.

Draft Arizona Computer Science Standards Page 12

Commented [BN12]: This paragraph might merit a header
reading “Computational Thinking”. Otherwise this important
component gets a bit lost.

Figure 2 Computer science practices

1

FOSTERING
AN INCLUSIVE
COMPUTING
CULTURE
7

2
COMMUNICATING

COLLABORATING
ABOUT AROUND
COMPUTING

COMPUTING

6

3
TESTING

RECOGNIZING
AND AND
REFINING DEFINING
COMPUTATIONAL COMPUTATIONAL
ARTIFACTS PROBLEMS

5 4

CREATING
COMPUTATIONAL
ARTIFACTS

DEVELOPING
AND USING
ABSTRACTIONS

Draft Arizona Computer Science Standards

Figure 2: PracticeX-12 Computer Science Framework. (2016)

Page 13

How to Read the Arizona Computer Science Standards

The Arizona K-12 Computer Science Standards are divided into Grades K, 1, 2,3,4,5,6, 7, SL and 9-12. The standards are divided by the five
essential concepts. These essential concepts include Computing Systems, Networks and the Internet, Data and Analysis, Algorithms and
Programming, and Impacts of Computing. Within each essential concept there may be hwo to five subconcepts represented‘. Each standard ties
back to a practice that every computationally literate student will engage in as they develop computational artifacts (see Figure 3). Each
standard will list (in order): The grade level, the essential concept being covered, the subconcept being covered and finally, the number of the
standard. The finished product will look like the example below in Figure 3. This example shows two different subconcepts under the essential
concept of Algorithms and Programing at the Kindergarten level.

Figure3. Example of subconcepts listed under an essentialcept

Grade level (or Grade band)
’ *> Concept (AP = Algorithms and Programming)

K.AP.A.1
‘ l > Standard Number
2> Subconcept (A = Algorithms)

Commented [BN13]: Realistically, these have ended up
reading like a single set of standards across grades 6-8, rather than
differentiated by grade level.

Commented [BN14]: It would be good to have a table listing all
concepts and related sub-concepts somewhere. The subconcepts
appear for the fist time in the tables, without introduction or
explanation.

Subconcept: Algorithms

K.AP.A.1 | With teacher assistance, model daily processes by following algorithms (sets of step-by-step instructions) to complete tasks.
Routines, such as morning meeting, clegrtime, and dismissal, are examples of algorithms that are common in many early
elementary classioms. Other examples of algorithms include making simple foods, navigating a classroom, and daily routing
brushing teeth. Just as people use algorithms to complete daily routines, they can program computers to use algorithphestéo
different taks. Algorithms are commonly implemented using a precise language that computers can interpret.
Practice(s):Developing and Using Abstractions: 4.4

Draft Arizona Computer Science Standards Page 14

Subconcept: Variables

K.AP.V.1 | With teacher assistance, model the way programs store and manipulate data by using numbers or other symbols to represent

information.
Information in the real world can be represented in computer programs. Students could use thumbs up/down as represénta

yes/no, use arrows when writing algorithms to represent directioeneode and decode words using numbers, pictographs, or
other symbols to represent letters or words.

Practice(s): Developing and Using Abstractions: 4.4

Draft Arizona Computer Science Standards Page 15

’Klndergarten‘ (Commented [BN15]: Generally, I'm concerned that many of

the kindergarten objectives involve a lot of reading and writing. |
think at this level, a focus on oral and graphical production would
be more equitable.

By the end of Kindergarten, students will begin the practice of utilizing devices to perform basic computer operations, such as turning a
computer on and off, and communicate basic hardware and software problems. Students will be able to explain the importance of password
protection and discuss how computer networks can connect people globally. Students will use digital devices to collect, modify, store, and
display data to make inferences or predictions. With teacher assistance, the computer science literate student will begin to develop an

understanding of how to model and develop algorithms and programs. Students will be introduced to khe impacts of computinﬂ. [Commented [BN16]: Societal? Personal? What impacts are
meant?

Essential Concept: Computing Systems (CS)

Subconcept: Devices (D)

K.CS.D.1 | With teacher guidance, select and operate an appropriate device to perform a task.

People use computing devices to perform a variety of tasks accurately and quickly. With teacher guidance, studentsasiteul
to select the appropriate device to use for tasks threyraquired to complete. For example, if students are asked to draw a pic
they should be able to open and use a drawing app/program to complete this task, or if they are asked to create a presents
they should be able to open and use presentasidtware.

Practice: Fostering an inclusive Computing Culture: 1.2

Subconcept: Hardware and Software (HS)

K.CS.HS.1 | Use appropriate terminology in identifying and describing the function of common physical components of computing systems.

A computing sstem is composed of hardware and software. Hardware consists of physical components. Students should b
identify and describe the function of external hardware, such as desktop computers, laptop computers, tablet devices, mor
keyboards, miceand printers.

Practice: Communicating about Computing: 7.2

Subconcept: Troubleshooting (T)

Draft Arizona Computer Science Standards Page 16

K.CS.T.1

Discuss basic hardware and software problems.

Problems with computing systems havieatient causes. Students at this level do not need to understensé causes, but they
should be able to communicate a problem (e.g., when an app or program is not working as expected, a device will ndteurn
sound does not work, etc.).

Practice: Testing and Refining Computational Artifacts, Communicating About Computing: 6.2, 7.3

Essential Concept: Networks and the Internet (NI)

Subconcept: Cybersecurity (C)

K.NI.C.1

Explain that a password helps protect the privacy of information.

Connecting devices to a network or the Internet provides great benefit, care must be taken to use authentication mecsaes,
strong passwords, to protect devices and information from unauthorized actleissis an essential first step in learnaimput
cybersecurity. They should appropriately use and protect the passwords they are require@JKeuw.nes and passwotdsuch as
those on computing devicesor\@iA y S g2N] &2 LINRPOGARS | gte& 2F | dzikKSyGaAaOl
Practice(s)Communicating About Computing: 7.2

Subconcept: Network, Communication, and Organization (NCO)

K.NI.
NCO.1

With teacher guidance, students discuss how lcomputer networks can be used to connect people to other people, places,
information, and ideas.

Small, wireless devices, such as cell phones, communicate with one another through a series of intermediary connectioohpg
as cellular towers. This coordination among many computing devices allows a person to voice call a friend or videcadiaatilyit

member. Details about the connection points are not expected at this level.

Practice(s): Communicating About Computing: 7.3

Essential Concept: Data and Analysis (DA)

Subconcept: Collection, Visualization and Transformation (CVT)

Draft Arizona Computer Science Standards Page 17

Commented [BN17]: Can kindergarteners work with text-
based passwords prior to being able to read?

Commented [BN18]: Some objectives use first person direct
objectives, i.e. “Explain that a password...” Others switch to 3"
person “students discuss...”

K.DA.
CvT.1

With teacher guidance, collect and transform data using digital devices; Display data for communication in various visual formats.
The collection and use of data about the world around them is a routine part of life and influences how pedfdayivaeryday
objects, such as cell phones, digital toys, and cars, can contain tools (such as sensors) and computers to collegt daic dispia
their surroundingsStudents could collect data on the weather, such as sunny days versus rainy d@ysptrature at the
beginning of the school day and end of the school day, or the inches of rain over the course of a storm. Students dbeld cour
number of pieces of each color of candy in a bag of candy, such as Skittles or M&Ms. Studdatsaiesldveyépf things that
interest them, such as favorite foods, pets, or TV shows, and collect answers to their surveys from their peers artbathtas. T|
collected could then be organized into two or more visualizations, such as a bar graph, pier ghietograph.
Practice(s)Communicating About Computing, Developing and Using Abstractions: 7.3, 4.4

Subconcept: Storage (S)

K.DA.S.1

Recognize that data can be collected and stored on different computing devices over time and retrieved later.

Allinformation stored and processed by a computing device is referred to as data. Data can be images, text documents,au
sdtware programs or apps, video files, etc. It can be retrieved, copied, and stored in multiple places. As studdnisres&so
complete tasks on a computing device, they will be manipulating data.

Practice(s)Developing and Using Abstractions: 4.3

Subconcept: Inference and Models (IM)

K.DA.IM
1

Discuss patterns in data to make inferences or predictions.

Data can be used to make inferences or predictions about the world. Students could analyze a Graph and pie chart sfirree ¢
bag of candy or thbverageb‘or colors in multiple bags of candy, identify the patterns for which colors are mostastd le
represented, and then make a prediction as to which colors will have most and least in a new bag of candy. Student$yeeuld
graphs of temperatures taken at the beginning of the school day and end of the school day, identify the patterns of when
temperatures rise and fall, and predict if they think the temperature will rise or fall at a particular time of the dayohésed
pattern observed.

Practice(s)Developing and Using Abstractions: 4.1

Essential Concept: Algorithms and Programming (AP)

Subconcept: Algorithms (A)

Draft Arizona Computer Science Standards Page 18

| Commented [BN19]: s literacy an issue with this?

Commented [BN20]: Do kindergartens know how to calculate
averages? Or what that means?

K.AP.A.1 | With teacher assistance, model daily processes by following algorithms (sets of step-by-step instructions) to complete tasks.
Routines, such as morning meeting, clegntime, and dismissal, are examples of algorithha fire common in many early
elementary classrooms. Other examples of algorithms include making simple foods, navigating a classroom, and dailikeou
brushing teeth. Just as people use algorithms to complete daily routines, they can program cemapuse algorithms to
complete different tasks. Algorithms are commonly implemented using a precise language that computers can interpret.
Practice(s):Developing and Using Abstractions: 4.4

Subconcept: Variables (V)

K.AP.V.1 | With teacher assistance, model the way programs store and manipulate data by using numbers or other symbols to represent
information.
Information in the real world can be represented in computer programs. Students could use thumbs up/down as represént
yes/no, use arrowshen writing algorithms to represent direction, or encode and decode words using numbers, pictographsg
other symbols to represent letters or words.
Practice(s): Developing and Using Abstractions: 4.4

Subconcept: Control (C)

K.AP.C.1

With teacher assistance, identify programs with sequences and simple loops, to express ideas or address a problem.
Programming is used as a tool to create products that reflect a wide range of interests. Control structures specifyithevtaicte
instructions areexecuted within a program. Computers follow instructions literally. Sequences are the order of instructions i
program. For example, sequences of instructions include steps for drawing a shape or moving a character across tffi¢hecre
commands tgrogram a robot are not in the correct order, the robot will not complete the task desired. Loops allow for the
repetition of a sequence of code multiple times. For example, in a program to show the life cycle of a butterfly, addmp coul
combined withmove commands to allow continual but controlled movement of the character.

Practice(s): Creating Computational Artifacts: 5.1

Subconcept: Modularity (M)

K.AP.M.1

With teacher assistance, solve a problem by breaking it down into smaller parts.-

Decomposition is the act of breaking down tasks into simpler tasks. Students could break down the steps needed to meke
butter and jelly sandwich, to brush their teeth, to draw a shape, to move a character across the screen, or to sobfkaa level
coding app.

Practice(s): Recognizing and Defining Computational Problems: 3.1

Draft Arizona Computer Science Standards Page 19

Subconcept: Program Development (PD)

K.AP.PD.1

With teacher assistance, develop plans that describe a program’s sequence of events, goals, and expected outcomes.
Programming is used as a tool to create products that reflect a wide range of interests, such as video games, interactive a
projects, and digital stories. Students cduldate a planning docurhe, such as a story map, a storyboard, or a sequentagfyc
organizer, to illustrate what their program will do. Students at this stage may complete the planning process with hedpifrom
teachers.

Practice(s): Creating Computational Artifacts, Communicating About Computing: 5.1, 7.2

K.AP.PD.2

With teacher assistance, identify attribution (credit) when using the ideas and creations of others while developing programs.
Using computers comes with a level of responsibility. Students should credit artifacts that were created by othersjcdudsas
music, and code. Credit could be given orally, if presenting their work to the claisriu'ndpor orally, if shang work on a class
blog or website. Proper attribution at this stage does not require a formal citation, such as in a bibliography or wbrks cite
document.

Practice(s): Communicating About Computing: 7.3

K.AP.PD.3

With teacher assistance, debug (identify and fix) errors in an algorithm or program that includes sequences and simple loops.
Algorithms or programs may not always work correctly. Students should be able to use various strategies, such as changi
sequence of the steps, following the alganmitin a stegby-step manner, or trial and error to fix problems in algorithms and
programs.

Practice(s): Testing and Refining Computational Artifacts: 6.2

K.AP.PD.4

With teacher assistance, using correct terminology, describe steps taken and choices made during program development.

At this stage, students should be able to talk or write about the goals and expected outcomes of the programs they dieate
choices that they made when creating programs. This could be donécosiimg journal]sdiscussions with a teacher, class
presentations, or blogs.

Practice(s)Communicating About Computing: 7.2

Essential Concept: Impacts of Computing (IC)

Subconcept: Culture (C)

Commented [BN21]: Most kindergarteners are pre-literate (or
at a very basic level of sight reading). It seems unlikely that they
would produce planning documents.

| Commented [BN22]: Literacy?

(Commented [BN23]: !!

K.IC.C.1 ‘ Discuss how |peop|e lived and worked before }and after the implementation or adoption of new computing technology.

Draft Arizona Computer Science Standards Page 20

Commented [BN24]: It's an interesting question as to whether
young students can discuss how the world was prior to computing
technology. Even their parents grew up in a computing age (and

L possibly grandparents).

Computing technology has positively and negatively changed the way people live and work. In the past, if students vemated t
about a topic, they needed access to a library to find a book abdidday, students can view and read information on the Intern
about a topic or they can downloagb®oks about it directly to a device. Such information may be available in more than one
language and could be read to a student, allowing for great acdbssib

Practice(s): Communicating About Computing: 7.2

Subconcept: Social Interactions (SI)

K.IC.SI.1

Work respectfully and responsibly with others online.

Online communication facilitates positive interactions, such as sharing ideas with many people, but the public and amtyreo
of online communication also allows intimidating and inappropriate behavior in the form of cyberbullying. Students ceuliegha
Worklon blogior in other collaborative spaces online, taking care to avoid sharing information that is inappropriate or that cou
personally identify them to others. Students could provide feedback to others on their work in a kiesba&oetful manner. They
should tell an adult if others are sharing things they should not share or are treating others in an unkind or disrexpaotiubn
online.Privacy should be considered when posting information online: such information cahfpeesieng time and be accessed
others, even unintended viewers.

Practice(s): Collaborating Around Computing: 2.1

Subconcept: Safety, Law, and Ethics (SLE)

K.IC.
SLE.1

Keep login information private, and log off of devices appropriately.
Using computers comes with a level of responsibility, such @adng login information, keeping passwords pri#amd logging
2FF 6KSY FAYAAKSR® wdz $a 3FdzARAY3I AYyiaSNIOlA2ya Ay IKS g2

Practice(s): Communicating About Computing:7.2

Draft Arizona Computer Science Standards Page 21

‘ Commented [BN25]: A kindergartner is going to keep a blog?? ‘

Commented [BN26]: This seems beyond most kindergarteners
(and likely beyond most 1% grader)

’Flrst Grade‘ Commented [BNZ?]: For the most part, these standards are a
repeat of the kindergarten ones. Why not use grade bands, and
explicate per year differences in grade-based introductory overview
statements.

By the end of first grade, students will recognize user needs and preferences while utilizing devices to perform basic computer operations,
hardware, software, and apply basic troubleshooting strategies. With teacher guidance, students will collect, transform, and explain how
different types of data can be stored and retrieved from a computing device. First grade students will develop an understanding of how to model
and identify algorithms and programs using loops and step by step instructions. The computer science literate student will discuss the impacts of
computing, including how people lived and worked before and after the implementation of new technology, how to work responsibly online, the
importance of keeping login information private and logging off devices appropriately.

Essential Concept: Computing Systems (CS)

Subconcept: Devices (D)

1.CS.D.1 | With teacher guidance, select and operate appropriate device and software to perform a task and recognize that users have
different needs and preferences for the technology they use.

People use computing devices to perform a variety of tasks accurately and quickly. With teacher guidance students sihetdd
select the appropriate app/program to use for tasks they are required to complete. Faplexédrstudents are asked to draw a
picture, they should be able to open and use a drawing app/program to complete this task, or if they are asked to create a
presentation, they should be able to open and use presentatftwa®. In addition, with teaddr guidance, students should
compare and discuss preferences fdtware with the same primary functionality. Students could compare different web brow
or word processing, presentation, or drawing programs.

Practice: Fostering an inclusive Computing Culture, Communicating About Computing: 1.2, 7.3

Subconcept: Hardware and Software (HS)

1.CS.HS.1 | Use appropriate terminology in identifying and describing the function of common physical components of computing systems.
A computing system is composed of hardware and software. Hardware consists of physical components. Students should

identify and describe the function of external hardware, sucfdiﬁaktop computetslaptop computers, tablet devices, monitors, [Commented [BN28]: | wonder how much longer this will be a
keyboards, mice, and printers. Students should be able to identify software suabdsowsers, games, etc. ({isievantiplatiorm?

Practice: Communicating about Computing: 7.2

Draft Arizona Computer Science Standards Page 22

Subconcept: Troubleshooting (T)

1.CS.T.1 | Identify basic hardware and software problems using accurate terminology.
Problems with computing systems haviatent causes. Students at this level do not need to understand those causes, but t
should be able to communicate a problem with accurate terminology (e.g., when an app or programasimag as expected, a
device will not turn on, the sound does not work, etc.).
Practice: Testing and Refining Computational Artifacts, Communicating About Computing: 6.3, 7.2

1.CS.T.2 | With teacher guidance, begin to use basic troubleshooting strategies.

Ideally, students would be able to use simple troubleshooting strategies, including turning a ffeaiceam to reboot it, closing
and reopening an app, turning on speakers, or plugging in headpﬁ'blnese are, however, not specified in the standaedabse
these problems may not ocdur.

Practice: Testing and Refining Computational Artifacts: 6.2

Essential Concept: Networks and the Internet (NI)

Subconcept: Cybersecurity (C)

1.NILC.1

]Explain what passwords \are and why we use them to protect personal information (e.g., name, location, phone number, home
address) and keep it private.

Connecting devices to a network or the Internet provides great benefit, care must be taken to use authentication mecsaes,
strong passwords, to protect dees and information from unauthorized acce$his is an essential first step in learning about
cybersecurity. They should appropriately use and protect thevoags they are required to usésernames and passwords, such a
those on computing devicesWi-CA y S g2N] a3 LINRGARS | gl & 2F +dzZiKSydaOl i
Practice(s)Communicating About Computing: 7.2

Subconcept: Network, Communication, and Organization (NCO)

1.NI.
NCO.1

With teacher guidance, students discuss how computer networks can be used to connect people to other people, places,
information, and ideas.

Small, wireless devices, such as cell phones, communicate with one another through a series of intermediary connectiochpo
as cellular towers. This coordinatiamong many computing devices allows a person to voice call a friend or video chat with a

member. Details about the connection points are not expected at this level.

Draft Arizona Computer Science Standards Page 23

Commented [BN29]: If they are not specified in the standards,
why is this section here? I'd suggest either including them or not,
and eliminating the “ideally” language.

Commented [BN30]: This is probably the appropriate time to
do this, rather than in kindergarten.

Practice(s): Communicating About Computing: 7.2

Essential Concept: Data and Analysis (DA)

Subconcept: Collection, Visualization and Transformation (CVT)

1.DA.
CVT.1

With teacher guidance, collect and transform data using digital devices; Display data for communication in various visual formats.
The collection and use of data about the world around them is a routine part of life and influences how pedfdmyivaeryday
objects, such as cell phones, digital toys, and cars, can contain tools (such as sensors) and computers to collegt daizh diepia,
their surroundingsStudents could collect data on the weather, such as sunny days versus rainy days, the temperature at the
beginning of the school day and end of the school day, or the inches of rain over the course of a storm. Studeotsitthed
number of pieces of each color of candy in a bag of candy, such as Skittles or M&Ms. Students could create survetfsabf thin
interest them, such as favorite foods, pets, or TV shows, and collect answers to their surveys from their ptegssaiithe data
collected could then be organized into two or more visualizations, such as a baﬁ[geanhaﬁt or pictograph.
Practice(s)Communicating About Computing, Developing and Using Abstractions: 7.1, 4.2

Subconcept: Storage (S)

1.DAS.1

|Exp|ain that a variety of data I(e.g., music, video, images, and text) can be stored in and retrieved from a computing device.

All information stored and processed by a computing device is referred to as data. Data can be images, text documents, audio files,
software programs or apps, video files, etc. It can be retrieved, copied, and stored in multiple places. As students use software to
complete tasks on a computing device, they will be manipulating data.

Practice(s)Developing and Using Abstractions: 4.3

Subconcept: Inference and Models (IM)

1.DA.IM
1

Identify patterns in data to make inferences or predictions.

Data can be used to make inferences or predictions about the world. Students could analyze a Graph and pie chart sfithe c
bag of candy or thbverage#or colors in multiple bags of candy, identify the patterns for which colors are mostastd le
represented, and then make a prediction as to which colors will have most and least in a new bag of candy. Studentsyzeuld

graphs of temperatures taken at the beginning of the school day and end of the school day, identify the patterns of when

Draft Arizona Computer Science Standards Page 24

Commented [BN31]: Do first graders know about fractions and
proportions?

teacher action rather than a student one. This happens
throughout...

Commented [BN32]: Here, the objective seems aimed at a

Commented [BN33]: Here again, when do students learn the
concept of averages? (probably 3 or 4t grade)

temperatures rise and fall, and predict if they think the temperature will rise or fall at a particular time of the daypiased
pattern observed.
Practice(s)Developing and Using Abstractions: 4.4

]Essential Concept: Algorithms and Programming (AP)\

Subconcept: Algorithms (A)

1.AP.A1

Model daily processes by following algorithms (sets of step-by-step instructions) to complete tasks.

Routines, such as morning meeting, clegrtime, and dismissal, are examples of algorithms that are common in many early
elementary classrooms. Other examples of algorithms include making simple foods, navigating a classroom, and dailikeou
brushing teeth. Just as people use algorithms to complete daily routines, they can program computers to use algorithms to
complete different tasks. Algorithms are commonly implemented using a precise language that computers can interpret.
Practice(s):Developing and Using Abstractions: 4.4

Subconcept: Variables (V)

1.AP.V.1

Model the way programs store and manipulate data by using numbers or other symbols to represent information.

Information in the real world can be represented in computer progr&teglents could use thumbs up/down as representationg
yes/no, use arrows when writing algorithms to represent direction, or encode and decode words using numbers, pictograp
other symbols to represent letters or words.

Practice(s)Developing and Using Abstractions: 4.3

Subconcept: Control (C)

1.AP.C.1

Identify programs with sequences and simple loops, to express ideas or address a problem.

Programming is used as a tool to create products that reflect a wide range of interests. Control stepetaifgshe order in which
instructions are executed within a program. Computers follow instructions literally. Sequences are the order of instractions
program. For example, sequences of instructions include steps for drawing a shape or movingtercaass the screen. If the
commands to program a robot are not in the correct order, the robot will not complete the task desired. Loops allow for the
repetition of a sequence of code multiple times. For example, in a program to show the life aymléteffly, a loop could be

combined with move commands to allow continual but controlled movement of the character.

Draft Arizona Computer Science Standards Page 25

Commented [BN34]: Most of these are a direct repeat of the
kindergarten standards for this concept area

’ Practice(s)Creating Computational Artifacts: 5.1

Subconcept: Modularity (M)

1.AP.M.1 | Solve a problem by breaking it down into smaller parts.
Decomposition is the act of breaking down tasks into simpler tasks. Students could break down the steps needed to make
butter and jelly sandwich, to brush their teeth, to draw a shape, to move a character across the screenyerttesel of a
coding app.
Practice(s)Recognizing and Defining Computational Problems: 3.1

Subconcept: Program Development (PD)

1.AP.PD.1 | With teacher assistance identify plans that describe a program’s sequence of events, goals, and expected outcomes.
Programming is used as a tool to create products that reflect a wide range of interests, such as video games, interactive a
projects, and digital stories. Students could create a planning document, such as a story map, a storyboard, otial geapten
organizer, to illustrate what their program will do. Students at this stage may complete the planning process with hedpifrom
teachers.
Practice(s)Creating Computational Artifacts, Communicating About Computing: 5.3, 7.1

1.AP.PD.2 | With teacher assistance, give attribution (credit) when using the ideas and creations of others while developing programs.
Using computers comes with a level of responsibility. Students should credit artifacts that were created by othersiducdsas
music, and code. Credit could be given orally, if presenting their work to the class, or in writing or orally, if sherimgaxdass
blog or website. Proper attribution at this stage does not require a formal citation, such as in a bibliographysaited
document.
Practice(s)Communicating About Computing: 7.3

1.AP.PD.3 | With teacher assistance, debug (identify and fix) errors in an algorithm or program that includes sequences and simple loops.
Algorithms or programs may not always waddrectly. Students should be able to use various strategies, such as changing t
sequence of the steps, following the algorithm in a digstep manner, or trial and error to fix problems in algorithms and
programs.
Practice(s)Testing and Refining Computational Artifacts: 6.3

1.AP.PD.4 | Using correct terminology, describe steps taken and choices made during program development.

At this stage, students should be able to talk or write about the goals and expected outcomes of the programs they dieate
choices that they made when creating programs. This could be done using coding journals, discussions with a teacher, clg

presentations, oblogs

Draft Arizona Computer Science Standards Page 26

‘ Commented [BN35]: A blog at 1 grade seems unlikely

’ Practice(s)Communicating About Computing: 7.2

Essential Concept: Impacts of Computing (IC)

Subconcept: Culture (C)

1.IC.C1

Discuss how people live and work before and after the implementation or adoption of new computing technology.

Computing technology has positively and negatively changed the way people live and work. In thetpdehts wanted to read
about a topic, they needed access to a library to find a book about it. Today, students can view and read informatibriesnehe
about a topic or they can downloagb®oks about it directly to a device. Such information maguadlable in more than one
language and could be read to a student, allowing for great accessibility.

Practice(s)Communicating About Computing: 7.1

Subconcept: Social Interactions (Sl)

1.ICSI1

Work respectfully and responsibly with others online.

Online communication facilitates positive interactions, such as sharing ideas with many people, but the public and amatyreo
of online communication also allows intimidating and inappropriate behavior in the form of cyberbullying. Students getttibghg
work on blogs or in other collaborative spaces online, taking care to avoid sharing information that is inappropriateaurlthat
personally identify them to others. Students could provide feedback to others on their work in a kind and tespentu They
should tell an adult if others are sharing things they should not share or are treating others in an unkind or disresmeutiubn
online.Privacy should be considered when posting information online: such information can persishéptiaé and be accessed
others, even unintended viewers.

Practice(s)Collaborating Around Computing: 2.1

Subconcept: Safety, Law, and Ethics (SLE)

1.IC
SLE.1

Keep login information private, and log off of devices appropriately.
Using computers comes with a level of responsibility, such as not sharing login information, keeping passwords privgtgngnd
2FTFT 6KSY FAYAEAKSR® wdz S& 3JdzARAY3I AYyGSNIOlGAz2zya Ay G(GKS g2

Practice(s)Communicating About Computing: 7.2

Draft Arizona Computer Science Standards Page 27

Second Grade

By the end of second grade, students [will be ‘able to select the appropriate device and software to perform specific tasks. They will understand
that computing systems use both hardware and software to process information and will be able to use basic troubleshooting strategies with
teacher guidance. Students will develop a deeper understanding of the importance and use of strong passwords. Students will independently
collect, transform, and display data using digital devices; they can store, copy, search, retrieve, modify, and delete information using a
computing device. Students will be able to create and follow algorithms and programs using loops and variables to solve a problem. The
computer science literate student will decompose steps into simpler tasks and give credit to ideas and creations of others.

Essential Concept: Computing Systems (CS)

Subconcept: Devices (D)

2.CS.D.1 | Recognize that users have different needs and preferences for technology they used by selecting and operating appropriate
devices.

People use computing devices to perform a variety of tasks accurately and quickly. Students should be able to selegiridie g
app/program to use for tasks they are required to complete. For example, if students are asked to draw a picture, theg sho
able to open and use a drawing app/program to complete this task, or if they are asked to create a presentatghrgutiele
able to open and use presentatiorftseare. In addition, with teacher guidance, students should compare and discuss prefere!
for sdtware with the same primary functionality. Students could compare different web browsers or word processargagon,
or drawing programs.

Practice(s)Fostering an inclusive Computing Culture, Communicating About Computing: 1.1, 7.3

Subconcept: Hardware and Software (HS)

2.CS.HS.1 | Understand how computing systems use both hardware and software to process information.

A computing system is composed of hardware and software. Hardware consists of physical components. Students should
identify and describe the function of external hardware, such as desktop computers, laptop computers, tabletaavies,
keyboards, mice, and printetdnderstand that input, processing, and output of information is the central purpose of computi
Practice(s)Communicating about Computing : 7.2

Subconcept: Troubleshooting (T)

Draft Arizona Computer Science Standards Page 28

Commented [BN36]: Later in the standards, these opening
objectives are in present tense

2.CS.T1

Explain basic hardware and software problems using accurate terminology.

Problems with computing systems havEatent causes. Students at this level do not need to understand those causes, but tH
should be able to communicate a problem with accurate terminology (e.g., whappaor program is not working as expected, g
device will not turn on, the sound does not work, etc.).

Practice(s)Communicating About Computing: 7.2

2.CS.T.2

With teacher guidance, use basic troubleshooting strategies.

]Ideall)k students would bable to use simple troubleshooting strategies, including turning a deffie@d on to reboot it, closing
and reopening an app, turning on speakers, or plugging in headphones. These are, however, not specified in the standard
these problems mayat occur.

Practice(s)Testing and Refining Computational Artifacts: 6.2

Essential Concept: Networks and the Internet (NI)

Subconcept: Cybersecurity (C)

2.NI.C.1

Explain what passwords are and why we use them, and use strong passwords to protect devices and information from
unauthorized access.

Connecting devices to a network or the Internet provides great benefit, care must be taken to use authentication mecsaes,
strong passwords, to protect devices and information from unauthorizedsiCBis is an essential first step in learning about
cybersecurity. They should appropriately use and protect the passwords they are requiredJgeus@mes and passwords, such &
those on computing devices or-Rlinetworks, provide a way of authedtr G Ay 3 | dzaASNRaA ARSydAdGe®
Practice(s)Communicating About Computing: 7.2

Subconcept: Network, Communication, and Organization (NCO)

2.NI.
NCO.1

Students can discuss how computer networks can be used to connect people to other people, places, information, and ideas.
Small, wireless devices, such as cell phones, communicate with one another through a series of intermediary connectiochpo
as cellular towers. This coordinati among many computing devices allows a person to voice call a friend or video chat with a
member. Details about the connection points are not expected at this level.

Practice(s): Communicating About Computing: 7.2

Draft Arizona Computer Science Standards Page 29

Commented [BN37]:
standard.

Drop this section if it is not a specified

Essential Concept: Data and Analysis (DA)

Subconcept: Collection, Visualization and Transformation (CVT)

2.DA.
CVT.1

Collect and transform data using digital devices; Display data for communication in various visual formats.

The collection and use of data about the world around them is a routine part of life and influences how pedfdayivaeryday
objects, such as cell phones, digital toys, and cars, can contain tools (such as sensors) and computers to collect daich dieptal
their surroundingsStudents could collect data on the weather, such as sunny days versus rainy deysptrature at the
beginning of the school day and end of the school day, or the inches of rain over the course of a storm. Students dbeld cou
number of pieces of each color of candy in a bag of candy, such as Skittles or M&Ms. Students coaldegatef things that
interest them, such as favorite foods, pets, or TV shows, and collect answers to their surveys from their peers arteathtgs. T|
collected could then be organized into two or more visualizations, such as a bar graph, pier ghetagraph.
Practice(s)Communicating About Computing, Developing and Using Abstractions: 7.3, 4.2

Subconcept: Storage (S)

2.DAS.1

Store, copy, search, retrieve, modify, and delete information using a computing device and define the information stored as data.
All information stored and processed by a computing device is referred to as data. Data can be images, text documents, audio files,
software programs or apps, video files, etc. It can be retrieved, copied, and stored in multiple places. As students use software to
complete tasks on a computing device, they will be manipulating data.

Practice(s)Developing and Using Abstractions: 4.1

Subconcept: Inference and Models (IM)

2.DA.IM
1

Describe patterns in data to make inferences or predictions.

Data can be used to make inferences or predictions about the world. Students could analyze a Graph and pie chart fihe c
bag of candy or the averages for colors in multiple bags of candy, identify the patterns for which colors are most and least
represented, and then make a prediction as to which colors will have most and least in a new bag of candy. Students$yzeuld
graphs of temperatures taken at the beginning of the school day and end of the school day, identify the patterns of when
temperatures rise and fall, and predict if they think the temperature will rise or fall at a particular time of the day, baised on
pattern observed.

Practice(s)Developing and Using Abstractions: 4.3

Draft Arizona Computer Science Standards Page 30

]Essential Concept: Algorithms and Programming (AP)\

Subconcept: Algorithms (A)

2.AP.A.1 | Model daily processes by creating and following algorithms (sets of step-by-step instructions to complete tasks.
Routines, such as morning meeting, clegrtime, and dismissal, are examples of algorithms that are common in many early
elementary classrooms. Other examples of algorithms include making simple foods, navigating a classroom, and dailikeou
brushing teeth. Just as people use algorithms to complete daily routines, they can program computers to use algorithms to
complete different tasks. Algorithms are commonly implemented using a precise language that computers can interpret.
Practice(s)Developing and Using Abstractions: 4.3

Subconcept: Variables (V)

2.AP.V.1 | Model the way programs store and manipulate data by using numbers or other symbols to represent information.
Information in the real world can be represented in computer progr&tusients could use thumbs up/down as representationg
yes/no, use arrows when writing algorithms to represent direction, or encode and decode words using numbers, pictograp
other symbols to represent letters or words.
Practice(s)Developing and Using Abstractions: 4.3

Subconcept: Control (C)

2.AP.C11

Develop programs with sequences and simple loops, to express ideas or address a problem.

Programming is used as a tool to create products that reflect a wide range of interests. Control stapetaifgshe order in whic
instructions are executed within a program. Computers follow instructions literally. Sequences are the order of ingtractions
program. For example, sequences of instructions include steps for drawing a shape or movingterdraass the screen. If the
commands to program a robot are not in the correct order, the robot will not complete the task desired. Loops allow for the
repetition of a sequence of code multiple times. For example, in a program to show the life aymlgteffly, a loop could be
combined with move commands to allow continual but controlled movement of the character.

Practice(s)Creating Computational Artifacts: 5.2

Subconcept: Modularity (M)

Draft Arizona Computer Science Standards Page 31

Commented [BN38]: In my opinion, students in second grade
could start to do “real” programming: including writing and
manipulating variables.

2.AP.M.1 | Decompose (break down) the steps needed to solve a problem into a precise sequence of instructions.
Decomposition is the act of breaking down tasks into simpler tasks. Students could break down the steps needed to méake
butter and jelly sandwich, to brush their teeth, to draw a shape, teev@ocharacter across the screen, or to solve a level of a
coding app.
Practice(s)Recognizing and Defining Computational Problems: 3.2

Subconcept: Program Development (PD)

2.AP.PD.1 | Develop plans that describe a program’s sequence of events, goals, and expected outcomes.
Programming is used as a tool to create products that reflect a wide range of interests, such as video games, interactive a
projects, and digital stories. Students could create a planning document, such as a story map, a stanyaaagyential graphic
organizer, to illustrate what their program will do. Students at this stage may complete the planning process with hipifrom
teachers.
Practice(s)Creating Computational Artifacts, Communicating About Computing: 5.2, 7.2

2.AP.PD.2 | Give attribution (credit) when using the ideas and creations of others while developing programs.
Using computers comes with a level of responsibility. Students should credit artifacts that were created by othersidumdsas
music, and coel Credit could be given orally, if presenting their work to the class, or in writing or orally, if sharing work on &
blog or website. Proper attribution at this stage does not require a formal citation, such as in a bibliography or wbrks cite
docunent.
Practice(s)Communicating About Computing: 7.3

2.AP.PD.3 | Debug (identify and fix) errors in an algorithm or program that includes sequences and simple loops.
Algorithms or programs may not always work correctly. Students should be ablevarigees strategies, such as changing the
sequence of the steps, following the algorithm in a digstep manner, or trial and error to fix problems in algorithms and
programs.
Practice(s)Testing and Refining Computational Artifacts: 6.2

2.AP.PD.4 | Using correct terminology, describe steps taken and choices made during the iterative process of program development.
At this stage, students should be able to talk or write about the goals and expected outcomes of the programs they dieaite
choices thathey made when creating programs. This could be done using coding journals, discussions with a teacher, clas
presentations, or blogs.
Practice(s)Communicating About Computing: 7.2

Draft Arizona Computer Science Standards Page 32

Essential Concept: Impacts of Computing (IC)

Subconcept: Culture (C)

2.IC.C1

[Compare how people live and work before and after the implementation or adoption of new computing technologw.
Computing technology has positively and negatively changed the way people live and work. In the past, if students vesated {
abouta topic, they needed access to a library to find a book about it. Today, students can view and read information onehe
about a topic or they can downloagb®oks about it directly to a device. Such information may be available in more than one
language and could be read to a student, allowing for great accessibility.

Practice(s)Communicating About Computing: 7.1

Subconcept: Social Interactions (Sl)

2.ICSl.1

Work respectfully and responsibly with others online.
Online communicatiofacilitates positive interactions, such as sharing ideas with many people, but the public and anonymous
of online communication also allows intimidating and inappropriate behavior in the form of cyberbullying. Students cettlikéhg
Mork on bloglor in other collaborative spaces online, taking care to avoid sharing information that is inappropriate or that coy
personally identify them to others. Students could provide feedback to others on their work in a kind and respectfullimayner.
shauld tell an adult if others are sharing things they should not share or are treating others in an unkind or disrespec&ubman
online.Privacy should be considered when posting information online: such information can persist for a long time aesised &g
others, even unintended viewers.

Practice(s)Collaborating Around Computing: 2.1

Subconcept: Safety, Law, and Ethics (SLE)

2.1C.
SLE.1

Keep login information private, and log off of devices appropriately.

Using computers comes with a level of responsibility, such as not sharing login information, keeping passwords privatgnand
2FF 6KSY FAYAAKSR® wdzZ Sa IdZARAYI AyiSNrOlrazya Ay (GKS g2
Practice(s)Communicating About Computing: 7.2

Draft Arizona Computer Science Standards Page 33

Commented [BN39]: This is a relatively narrow topic that is
identical in K-2. Is it necessary to include it each year?

Commented [BN40]: This is probably the first year that a
personal blog might be feasible.

Third Grade /

Commented [BN41]: This must have been the start of a grade
band in model standards, as the language shifts considerably here.

By the end of third grade, students will explore a variety of computing devices and tools to further develop their computational thinking and

problem-solving skills. They will be able to collaborate locally and globally with peers. Students will plan, make predictions, solve problems, and

draw conclusions about data, programs, and computational artifacts. The komputer science literate btudent will learn the importance of ‘/Commented [BN42]: Thisis a much more appropriate term ‘
protecting personal information and respecting the rights of others. (hamscomputationaliylierateiusedleallion

Essential Concept: Computing Systems (CS)

Subconcept: Devices (D)

3.CS.D.1 | Identify how internal and external parts of computing devices function to form a system within a single device and hardware

that connects to the device to extend capability.

Keyboard input oa mouse click could cause an action to happen or information to be displayed on a screen; this could only
because the computer has a processor to evaluate what is happening externally and produce corresponding responses. S
should describe hodevices and components interact using correct terminology.

Practice(s): Communicating About Computing, Recognizing and Defining Computational Problems: 7.2, 3.2

Subconcept: Hardware and Software (HS)

3.CS.HS.1 | Recognize that hardware and software communicate in a special language that the computing system can understand.
Explanationf 2 YLJdzi Ay3 aeaidsSvya O2y@SNI AyaiaNHzOGA2yaszr adz0K | a a
can understand.

Practice(s): Communicating Abdvmputing: 7.2

3.CS.HS.2 | Recognize that hardware can only accomplish the specific tasks the software is designed to accomplish.
For examplegamera can take picture because the camera software allows it to take pictures
Practice(s): Communicating AbaZéwmputing: 7.2

Subconcept: Troubleshooting (T)

Draft Arizona Computer Science Standards Page 34

3.C5T1

Identify and utilize common troubleshooting strategies to solve simple hardware and software problems.

Although computing systems may vary, common troubleshooting strategies can be used on teas, cecking connections ar|
power or swapping a working part in place of a potentially defective part. Rebooting a machine is commonly effectivatbeca
resets the computer. Because computing devices are composed of an interconnected system of badigaftware,
troubleshooting strategies may need to address both.

Practice(s): Communicating About Computing: 7.2

Essential Concept: Networks and the Internet (NI)

Subconcept: Cybersecurity (C)

3.NI.C.1

Identify real-world cybersecurity problems and how personal information can be protected.

Just as we protect our personal property-line, we also need to protect our devices and the information stored on them.
Information can be protected using various securigasures. These measures can be physical and/or digital. For example, dis
topics could be based on current events related to cybersecurity or topics that are applicable to students and the pevizams/(
they use.

Practice(s): Communicating alidbomputing, Recognizing and Defining Computational Problems: 7.1, 3.1

Subconcept: Network, Communication, and Organization (NCO)

3.NI
NCO.1

Model how information flows in a physical or wireless path to travel to be sent and received

There are physical paths for communicating information, such as Ethernet cables, and wireless paths, skchofteWi
information travels on a combination of physical and wireless paths; for example, wireless paths originate from a phgsiciibicg
point.

Practice(s): Developing and Using Abstractions: 4.3

Essential Concept: Data and Analysis (DA)

Subconcept: Collection, Visualization and Transformation (CVT)

3.DA.
CVT.1

Select tools from a specified list to collect, organize, and present data visually to highlight relationships and support a claim.

Draft Arizona Computer Science Standards Page 35

Tools are chosen based upon the type of measurement they use as well as the type of data people wish tO@merieg data
can make interpreting and communicating it to others ea{@atapoints can be clustedeby a number of commonalitiés.
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts: 4.1, 5.1

Subconcept: Storage (S)

3.DAS.1

Recognize different file extensions.

|Music, images, video, and tepdquire different amounts of storab@/ideo will often require more storage than music or images
alone because video combines both.

Practice(s): Communicating About Computing: 7.2

Subconcept: Inference and Models (IM)

3.DA.IM
1

Use a computational tool to draw conclusions, make predictions, and answer questions utilizing a specified data set.
People use data to highlight or predict outcomes. Basing inferences or predictions on data does not guarantee theirthecura
data must be relevant and stfficient quantity.

Practice(s): Communicating about Computing, Collaborate around Computing: 7.2, 2.4

Essential Concept: Algorithms and Programming (AP)

Subconcept: Algorithms (A)

3.APA.L

Recognize and compare multiple algorithms for the same task and determine which are appropriate.

Different algorithms can achieve the same result, though sometimes one algorithm might be most appropriate for a specifi
situation. Students should be able to look dtatent ways to solve the same task and decitdctvwould be the best solution. Fg
example, students might compare algorithms that describe how to get ready for school or how to tie their shoes. Students
use a map and plan multiple algorithms to get from one point to another. Another exangitelmeito write diferent algorithms
to draw a regular polygon and determine which algorithm would be the easiest to modify or repurpose to dfaveatgiolygon.
Practice(s)Developing and Using Abstractions, 4.4

Subconcept: Variables (V)

Draft Arizona Computer Science Standards Page 36

‘ Commented [BN43]: This is super vague

Commented [BN44]: The explanation doesn’t match the
objective at all. What does this have to do with the file extension
names?

3.AP.V.1

Create programs that use variables to store and modify data.
Variables are used to store and modify data. At this level, understanding how to use variables is sufficient. Datgtypes var
programming language, but many have types for numbers and texexamples, students may use mathematical operations t
add to the score of a game or subtract from the number of lives in a game. The use of a variable as a countdown tirer is &
example. Programs can imply either digital or paper based designs.
Prectice(s)Creating Computational Artifacts: 5.2

Subconcep

t: Control (C)

3.AP.C.1

|Create programs)that include sequences, events, loops, and/or conditionals.

Control structures specify the order (sequence) in which instructions are executed within a program and can be comppuetl
the creation of more complex programs. For example, if dialogue is not sequenced correctly when programming a simple
story, the story will not make sense. If the commands to program a robot are not in the correct order, the robot wilphetecon
the task desired. Events allow portions of a program to run based on a specific action. For example, students copldgveta g
to explain the water cycle and when a specific component is clicked (event), the preguédvshow information about that part g
the water cycle. Loops allow for the repetition of a sequence of code multiple times. For example, in a progvesdubeas an
animation about a famous historical character, students could use a loop to have the character walk across the screen as
introduce themselves. Conditionals allow for the execution of a portion of code in a program when a certain éetdigoRror
example, students could write a math game that asks multiplication fact questions and then uses a conditional to checlomvh
not the answer that was entered is correct.
Practice(s): Creating Computational Artifacts: 5.2

Subconcept: Modularity (M)

3.AP.M.1

Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process.
Decomposition is the act of breaking down tasks into simpler tasks. Decomposition also enables different peoplanto work
different parts at the same time. For example, students could create an animation by separating a stoffenatot dicenes. For
each scene, they would select a background, place characters, and program actions.

Practice(s): Recognizing and Defining Computational Problems: 3.2

Subconcept: Program Development (PD)

Draft Arizona Computer Science Standards Page 37

Commented [BN45]:
programs in 2" grade

| think students could start making

3.AP.PD.1

With teacher guidance, use an iterative process to plan the development of a program by including others' perspectives and
considering user preferences.

Planning is an importargart of the iterative process of program development. Students outline key features, time and resoy
constraints, and user expectations. Students should document the plan as, for example, a storyboard, flowchart, pseudocq
story map.

Practice(s): Fostering an Inclusive Computing Culture, Creating Computational Artifacts: 1.1, 5.1

3.AP.PD.2

Observe intellectual property rights and give appropriate attribution when creating or remixing programs.

Intellectual property rights can vary by country butyright laws give the creator of a work a set of rights that prevents others
from copying the work and using it in ways that they may not like. Students should identify instances of remixing, whea ide|
borrowed and iterated upon, and credit the oridisaeator. Students should also consider common licenses that place limitati
or restrictions on the use of computational artifacts, such as images and music downloadéioeflaternet. At this stage,
attribution should be written in the format requitdy the teacher and should always be included on any programs shared on
Practice(s): Creating Computational Artifacts, Communicating About Computing: 5.2, 7.3

3.AP.PD.3

Test and debug (identify and fix errors) a program or algorithm to ensure it runs as intended.

As students develop programs they should continuously test those programs to see that they do what was expected amy,fi
any errors. Students should also be able to successfully debug simple errors in programs created by others.

Practice(s): Testing and Refining Computational Artifacts: 6.1, 6.2

3.AP.PD.4

Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review
stages of program development.

Collaborative computing the process of performing a computational task by working in pairs or on teams. Because it invol
asking for the contributions and feedback of othefi&gaive collaboration can lead to better outcomes than working
independently. Students should takens in different roles during program development, such as note taker, facilitator, progr
G§SaGSNE 2NJ GRNAGSNE 2F (GKS O2YLl]zi SN

Practice(s): Collaborating Around Computing: 2.2

3.AP.PD.5

Describe choices made during program development using code comments, presentations, and/or demonstrations.

People communicate about their code to help others understand and use their programs. Another purpose of communicat
design choices is to show an understanding of one's work. These explanations cofédtrti@mselves as-ime code comments
for collaborators and assessors, or as part of a summative presentation, such as a ceitheomghk or coding journal.

Practice(s): Communicating About Computing: 7.2

Draft Arizona Computer Science Standards Page 38

Essential Concept: Impacts of Computing (IC)

Subconcept: Culture (C)

3.IC.C1

Identify computing technologies that have changed the world.
New computing technology is created and existing technologies are modified for many reasons, including to increasefitiseir b
decrease their risks, amdeet societal needs. Students, with guidance from their teacher, should discuss topics that relate to t
history of technology and the changes in the world due to technology. Topics could be based on current news content, such
robotics, wireless Inteat, mobile computing devices, GPS systems, wearable computing, or how social media has influenceg
and political changes.

Practice(s): Recognizing and Defining Computational Problems: 3.1

3.1C.C.2

With teacher guidance, brainstorm ways to improve the accessibility and usability of technology products for the diverse needs
and wants of users.

¢tKS RSOSt2LIVSYyld YR Y2RATAOFIGAZ2Y 2F O2 YLz Ay ffect Gadpsy 2 £ 2 3
differently. Anticipating the needs andants of diverse end users requires students to purposefully consider potential perspect
users with dferent backgrounds, ability levels, points of view, and disabilities. For example, students may consider using bot
and text when they wisto convey information in a game. They may also wish to vary the types of programs they create, knov
that not everyone share their own tastes.

Practice(s): Fostering an Inclusive Computing Culture: 1.2

Subconcept: Social Interactions (SI)

3.CSIL1

Seek opportunities for local and global collaboration to facilitate communication and innovation.
Computing influences many social institutions such as family, education, religion, and the economy. People can wanktin diffq
places and at different tingeto collaborate and share ideas when they use technologies that reach across the globe. Computi
provides the possibility for collaboration and sharing of ideas and allows the benefit of diverse perspectives. Thieseractitals
affect how local ad global groups interact with each other, and alternatively, these interactions can change the nature of gro
For example, a class can discuss ideas in the same class, school, or in another state or nation through interactive webinars
Practice(s): Fostering an Inclusive Computing Culture: 1.1

Subconcept: Safety, Law, and Ethics (SLE)

Draft Arizona Computer Science Standards Page 39

3.IC. Use public domain or creative commons media, and refrain from copying or using material created by others without permission.
SLE.1 Ethical complications ariseom the opportunities provided by computing. The ease of sending and receiving copies of media
Internet, such as video, photos, and music, creates the opportunity for unauthorized use, such as online piracy andftlisregar
copyrights. Students shta consider the licenses on computational artifacts that they wish to use. For example, the license on
downloaded image or audio file may have restrictions that prohibit modification, require attribution, or prohibit use entirel
Practice(s): Communicating About Computing: 7.3

Draft Arizona Computer Science Standards Page 40

Fourth Grade

By the end of fourth grade, students refine their skills as they construct programs and utilize algorithms to accomplish a task. They learn to
analyze a variety of hardware and software tools; and will)further develop their computational thinking and problem-solving skills. Working
independently and collaboratively students decompose larger problems into smaller tasks. Students understand that by protecting personal
information and respecting the rights of others, students continue to be responsible users of technology. The computer science literate student
begins to think about the impacts of computing and computing devices.

Essential Concept: Computing Systems (CS)

Subconcept: Devices (D)

4.CS.D.1 | With teacher guidance model how internal and external parts of computing devices function to form a system between multiple
devices.

Computing devices may be connected to other devices or components to extend their capabilities, such as sensing and se
information. Connections can take many forms, such as physical or wireless. Together, devices and components form a sy
interdependent parts that interact for a common purpose

Practice(s): Communicating About Computing, Recognizing and Definipgit@tomal Problems, Creating Computational
Artifacts: 7.3, 3.1, 5.2

Subconcept: Hardware and Software (HS)

4.CS.HS.1 | Recognize that bits serve as the basic unit of data in computing systems and can represent a variety of information.
Hardware andsoftware communicate in binary digits commonly represented in Os and 1s
Practice(s): Communicating About Computing: 7.2

4.CS.HS.2 | Recognize that a single piece of hardware can accomplish different tasks depending on the software.

For example, a photo filter application (software) works with a camera (hardware) to produce a variety of effects thathhang
appearance of an image. This image is transmitted and stored as bits, or binary digits, which are commonly represeated ag
1s. All information, including instructions, is encoded as bits.

Practice(s): Practice(s): Communicating About Computing: 7.2

Draft Arizona Computer Science Standards Page 41

(Commented [BN46]:

Stopped here: 7/25

(Commented [BN47]:

Mixed verb tenses

Subconcept: Troubleshooting (T)

4.CS.T.1

]Develop a model with teacher guidance common troubleshooting \strategies to solve simple hardware and software problems.
Although computing systems may vary, common troubleshooting strategies can be used on them, such as checking conne
power or swapping a working part in place of a potentially defective part. Rebootiraghine is commonly effective because it
resets the computer. Because computing devices are composed of an interconnected system of hardware and software,
troubleshooting strategies may need to address both.

Practice(s): Recognizing and Defining Comjmtat Problems, Collaborating Around Computing: 3.1, 2.4

Essential Concept: Networks and the Internet (NI)

Subconcept: Cybersecurity (C)

4.NI.C.1

Discuss real-world cybersecurity problems and how personal information can be protected.

Just as werotect our personal propertyneline, we also need to protect our devices and the information stored on them.
Information can be protected using various security measures. These measures can be physical and/or digital. For exzssiole
topics could be based on current events it cybersecurity or topics that are applicable to students and the programs/deviq
they use.

Practice(s): Communicating about Computing, Recognizing and Defining Computational Problems: 7.2, 3.3

Subconcept: Network, Communication, and Organization (NCO)

4.NI.
NCO.1

Model how information is broken down into smaller pieces, transmitted as packets through multiple devices over networks and
the Internet, and reassembled at the destination.

There are physical paths for communicating information, such as Ethernet cables, and wireless paths, skchoiteWi
information travels on a combination of physical and wireless paths; for example, wireless paths originate from a phgsiciidicq
point. Information is broken down into smaller pieces called packets, which are sent independently and reassembled at the
destination. Routers and switches are used to properly send packets across paths to their destinations.

Practice(s): Developing attsing Abstractions: 4.4

Draft Arizona Computer Science Standards Page 42

(Commented [BN48]: ??

Essential Concept: Data and Analysis (DA)

Subconcept: Collection, Visualization and Transformation (CVT)

4.DA.
CVT.1

Independently select tools to collect, organize, and present data visually to highlight relationships and support a claim.

Tools are chosen based upon the type of measurement they use as well as the type of data people wish tO@zserieg data
can make interpreting and communicating it to others easier. Data points dallu;ttered by a number of commoniﬂﬁ
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts: 4.1, 5.1

Subconcept: Storage (S)

4.DAS.1

Recognize kiifferent file extensions and how they are stored bn a computing device.

Music, images, video, and text require different amounts of storage. Video will often require more storage than musiesor imég
alone because video combines bddefine cloud storagd-or example, two pictures of the same object can require different
amounts of storage based upon their resolution.

Practice(s): Communicating About Computing: 7.2

Subconcept: Inference and Models (IM)

4.DA.IM.
1

Use a computational tool to manipulate data to draw conclusions, make predictions, and answer questions.

People use data to highlight or propose caase-effect relationships and predict outcomes. Basing inferences or predictions @
data does not guarantee their accuracy; the data must be relevant and of sufficient quantity.

Practice(s): Communicating abdbbmputing, Creating Computational Artifacts, Collaborate around Computing: 7.2, 5.2, 2.4

Essential Concept: Algorithms and Programming (AP)

Subconcept: Algorithms (A)

4.AP.A.1

Compare and refine multiple algorithms for the same task and determine which is the most appropriate.

Different algorithms can achieve the same result, though sometimes one algorithm might be most appropriate for a specific
situation. Students should be able to look at different ways to solve the same task and decide which would be the best solution.
For example, students might compare algorithms that describe how to get ready for school or how to tie their shoes. Students
could use a map and plan multiple algorithms to get from one point to another. They could look at routes suggested by mapping

software and change the route to something that would be better, based on which route is shortest or fastest or would avoid a

Draft Arizona Computer Science Standards Page 43

Commented [BN49]: vague

Commented [BN50]: file extensions are not stored...files are

problem. Another example might be to write different algorithms to draw a regular polygon and determine which algorithm would
be the easiest to modify or repurpose to draw a different polygon.
Practice(s)Testing and Refining Computational Artifacts, Recognizing and Defining Computational Problems: 6.3

Subconcep

t: Variables (V)

4.AP.V.1

Create programs that use variables to store and modify data, recognizing that the data type determines the values that can be
stored and the operations that can be performed on the data.

Variables are used to store and modify data. At this level, understanding how variedaes is sufficient, without a fuller
understanding of the technical aspects of variables (such as identifiers and memory locations). Data types vary by pgpgral
language, but many have types for numbers and text. For examples, students may bhsmatital operations to add to the scof
of a game or subtract from the number of lives in a game. The use of a variable as a countdown timer is another exarapis.
can imply either digital or paper based designs.

Practice(s)Creating Computational Artifacts: 5.2

Subconcep

t: Control (C)

4.AP.C.1

Create programs that include sequences, events, loops, and/or conditionals.

Control structures specify the order (sequence) in which instructions are executed within a program and can be compjpetl
the creation of more complex programs. For example, if dialogue is not sequenced correctly when programming a simple ¢
story, the story will not make sense. If the commands to program a robot are not in the correct order, the robot wilpietecon|
the task desired. Events allow portions of a program to run based on a specific action. For example, students copldgvata g
to explain the water cycle and when a specific component is clicked (event), the preomédvshow information about that part g
the water cycle. Loops allow for the repetition of a sequence of code multiple times. For example, in a progreodubas an
animation about a famous historical character, students could use a loop to have the character walk across the screen as
introduce themselves. Conditionals allow for the execution of a portion of code in a program when a certain ¢etdigofor
example, students could write a math game that asks multiplication fact questions and then uses a conditional to checlomh
not the answer that was entered is correct.

Practice(s): Creating Computational Artifacts: 5.2

Subconcep

t: Modularity (M)

Draft Arizon

a Computer Science Standards Page 44

4.AP.M.1

Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process.
Decomposition is the act of breaking down tasks into simpler tasks. Decomposition also enables different peoklerto
different parts at the same time. For example, students could create an animation by separating a stoffenatot dicenes. For
each scene, they would select a background, place characters, and program actions.

Practice(s): Recognizing and Defining Computational Problems: 3.2

4.AP.M.2

Modify, remix, or incorporate portions of an existing program into one's own work to add more advanced features.

Programs can be broken down into smaller parts, which can be incorporated into new or @xagiiagns. For example, studentg
could modify prewritten code from a singlayer game to create a twplayer game with slightly fferent rules, remix and add
another scene to an animated story, use code to make a ball bounce from another program ibasketlvall game, or modify af
image created by another student.

Practice(s): Creating Computational Artifacts: 5.3

Subconcept: Program Development (PD)

4.AP.PD.1 | Use an iterative process to plan the development of a program by including others' perspectives and considering user
preferences.
Planning is an important part of the iterative process of program development. Students outline key features, time acel res
constraints, and user expectations. Students should document the plan as,fglexa storyboard, flowchart, pseudocode, or
story map.
Practice(s): Fostering an Inclusive Computing Culture, Creating Computational Artifacts: 1.1, 5.1

4.AP.PD.2 | Observe intellectual property rights and give appropriate attribution when creating or remixing programs.
Intellectual property rights can vary by country but copyright laws give the creator of a work a set of rights that minezats
from copying the work and using it in ways that they may not like. Students should identify instances of remixing, \st&n ide
borrowed and iterated upon, and credit the original creator. Students should also consider common licenses that plameslim
or restrictions on the use of computational artifacts, such as images and music downloadéidefioternet. At this stge,
attribution should be written in the format required by the teacher and should always be included on any programs shared
Practice(s): Creating Computational Artifacts, Communicating About Computing: 5.2, 7.3

4.AP.PD.3 | Test and debug (identify and fix errors) a program or algorithm to ensure it runs as intended.
As students develop programs they should continuously test those programs to see that they do what was expected amy,fi
any errors. Students should also be able to succesdélilyg simple errors in programs created by others.
Practice(s): Testing and Refining Computational Artifacts: 6.1, 6.2

Draft Arizona Computer Science Standards Page 45

4.AP.PD.4

Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review
stages of program development.

Collaborative computing is the process of performing a computational task by working in pairs or on teams. Becauss it inv:
asking for the contributions and feedback of otheffeaive collaboration can lead to bettertoomes than working
independently. Students should take turns in different roles during program development, such as note taker, facilgeaan, pri
0§SAGSNE 2NJ aRNAGSNE 2F (KS 02 YLzi SN

Practice(s): Collaborating Around Computing: 2.2

4.AP.PD.5

Describe choices made during program development using code comments, presentations, and/or demonstrations.

People communicate about their code to help others understand and use their programs. Another purpose of communicat
design choices is to show an enstanding of one's work. These explanations could manifest themselvebreesdade comments
for collaborators and assessors, or as part of a summative presentation, such as a ceitieougli or coding journal.

Practice(s): Communicating About Computing: 7.2

Essential Concept: Impacts of Computing (IC)

Subconcept: Culture (C)

4.IC.C1

Identify and discuss computing technologies that have changed the world, and express how those technologies influence, and are
influenced by, cultural practices.

Newcomputing technology is created and existing technologies are modified for many reasons, including to order to increag
benefits, decrease their risks, and meet societal needs. Students, with guidance from their teacher, should discuasreaiesoh
the history of technology and the changes in the world due to technology. Topics could be based on current news coatent, g
robotics, wireless Internet, mobile computing devices, GPS systems, wearable computing, or how social media dex softisdn
and political changes.

Practice(s): Recognizing and Defining Computational Problems: 3.1

4.1C.C.2

Brainstorm ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.

The developmentand 2 RAFA Ol GA2y 2F O02YLIziAy 3 G(SOKy2i 23 effett fdipsR NA @
differently. Anticipating the needs and wants of diverse end users requires students to purposefully consider potentialgefp
users with dferent backgrounds, ability levels, points of view, and disabilities. For example, students may consider using bot
and text when they wish to convey information in a game. They may also wish to vary the types of programs they creage, kn
that not evergpne share their own tastes.

Draft Arizona Computer Science Standards Page 46

Practice(s): Fostering an Inclusive Computing Culture: 1.2

Subconcept: Social Interactions (SI)

4.1C.SI.1

Seek opportunities for local and global collaboration to facilitate communication and innovation.
Computing influencemany social institutions such as family, education, religion, and the economy. People can work in differg
places and at different times to collaborate and share ideas when they use technologies that reach across the globegComp
provides the possilitiy for collaboration and sharing of ideas and allows the benefit of diverse perspectives. These social inte
affect how local and global groups interact with each other, and alternatively, these interactions can change the natunesof g
For elample, a class can discuss ideas in the same class, school, or in another state or nation through interactive webinars
Practice(s): Fostering an Inclusive Computing Culture: 1.1

Subconcept: Safety, Law, and Ethics (SLE)

4.IC.SLE.
1

Use public domain or creative commons media, and refrain from copying or using material created by others without permission.
Ethical complications arise from the opportunities provided by computing. The ease of sending and receiving copiesrofiraed
Internet, such asideo, photos, and music, creates the opportunity for unauthorized use, such as online piracy and disregard
copyrights. Students should consider the licenses on computational artifacts that they wish to use. For example, thie éicense,
downloaded imge or audio file may have restrictions that prohibit modification, require attribution, or prohibit use entirely.
Practice(s): Communicating About Computing: 7.3

Draft Arizona Computer Science Standards Page 47

Fifth Grade

By the end of fifth grade, students independently and collaboratively construct programs and utilize algorithms to accomplish real world tasks.
Students continue to decompose larger problems into smaller tasks. They also recognize the impacts of computing and computing devices and
model how computing systems work. The computer science literate student understands that accurate use of terminology as well as the
responsible use of technology is vital and continues to place emphasis on intellectual property rights.

Essential Concept: Computing Systems (CS)

Commented [BN51]: Starting with the 5t grade, many of the

detailed descriptions for subconcepts do not include example
student tasks or activities. This makes it more difficult for a teacher

to understand how students can learn the concept in class.

Subconcept: Devices (D)

5.CS.D.1 | Analyze and model how internal and external parts of computing devices communicate as a system.
Computing devices often depend on other devices or components. For example, a robot depends on a physically attached
sensor to detect chamg in brightness, whereas the light sensor depends on the robot for power. A smartphone can use wir
connected headphones to send audio information, and the headphones are useless without a music source.
Practice(s): Communicating About ComputRggcognizing and Defining Computational Problems, Creating Computational
Artifacts, Testing and Refining Computational Artifacts: 7.2, 3.2, 5.2, 6.3

5.CS.D.2 | Computing devices affect humans in positive and negative ways.

The use of computing devices also has potential consequences, such as in the areas of privacy and security
Practice(s): Fostering an Inclusive Computing Culture, Communicating About Computing: 1.1, 7.2

Subconcept: Hardware and Software (HS)

5.CS.HS.1

Model how information is transformed into binary digits to be stored or processed.

Hardware and software communicate in binary digits commonly represented in Os and 1s. For example, the roman numeyg
can be converted to its binary equivalent (1@0

Practice(s): Communicating About Computing, Creating Computational Artifacts: 7.2, 5.2

Draft Arizona Computer Science Standards Page 48

5.CS.HS.2

Provide examples of how hardware can accomplish different tasks depending on the software.
In order for a person to accomplish tasks with a compbieth hardware and software are needed. At this stage, a model shou
only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. Studeamsacq
model on paper or in a drawing program, program an ation to demonstrate it, or demonstrate it by acting this out in some
way.

Practice(s): Communicating About Computing, Creating Computational Artifacts: 7.2, 5.3

Subconcept: Troubleshooting (T)

5.C5.T.1

Independently apply potential solutions and solve simple hardware and software problems using common troubleshooting
strategies.

Although computing systems may vary, common troubleshooting strategies can be used on them, such as checking conne
power or swapping a working part in place of a paiy defective part. Rebooting a machine is commonly effective because
resets the computer. Because computing devices are composed of an interconnected system of hardware and software,
troubleshooting strategies may need to address both.

Practice(s)Recognizing and Defining Computational Problems, Developing and Using Abstractions: 3.2, 4.1

Essential Concept: Networks and the Internet (NI)

Subconcept: Cybersecurity (C)

5.NI.C.1

Identify solutions to real-world cybersecurity problems and how personal information can be protected.

Just as we protect our personal propertyite, we also need to protect our devices and the information stored on them. Inform
can be protected using various secuntgasures. These measures can be physical and/or digital. For example, discussion top
be based on current events related to cybersecurity or topics that are applicable to students and the programs/devises they
Practice(s): Communicating abdibmputing, Recognizing and Defining Computational Problems: 7.2, 3.1

Subconcept: Network, Communication, and Organization (NCO)

5.NL
NCO.1

Analyze and evaluate the advantages and disadvantages of various network types.

There are physical paths for comnicating information, such as Ethernet cables, and wireless paths, suchH-as\egellular data.
The choice of device and type of connection will affect the path information travels and the potential bandwidth (thg tapacit
transmit data or bits ira given timeframe).

Draft Arizona Computer Science Standards Page 49

Practice(s): Developing and Using Abstractions, Collaborating Around Computing: 4.1, 2.4

Essential Concept: Data and Analysis (DA)

Subconcept: Collection, Visualization and Transformation (CVT)

5.DA.
CVT.1

Independently select tools to collect, organize, manipulate, and present data visually through multiple representations to

highlight relationships and support a claim.

Tools are chosen based upon the type of measurement they use as well as the type of data people wiste t@@zerzing data
can make interpreting and communicating it to others easier. Data points can be clustered by a number of commonalitie® 1
data could be manipulated and displayed ifietient formats to emphasize particular aspects or parts efdata set.

Practice(s): Developing and Using Abstractions, Creating Computational Artifacts: 4.1, 5.1

Subconcept: Storage (S)

5.DAS.1

Identify and discuss different file extensions and how they are stored and retrieved on a computing device.

Music, images, video, and text require different amounts of storage. Video will often require more storage than musiesor ima
alone because video combines both. For example, two pictures of the same object can require different amounts of stdrage
upon their resolution.

Practice(s): Communicating About Computing: 7.2

Subconcept: Inference and Models (IM)

5.DA.IM.
1

Use data to highlight or propose cause-and-effect relationships, predict outcomes, or communicate an idea.

|Exp|anationPeopIe use data to highlight or propose caaseé-effect relationships and predict outcomes. Basing inferences or
predictions on data does not guarantee their accuracy; the data must be relevant and of sufficient quantity.

Practice(s): Communicating Abdliomputing, Developing and Using Abstractions, Collaborate around Computing: 7.1, 4.3, 2

Essential Concept: Algorithms and Programming (AP)

Subconcept: Algorithms (A)

Draft Arizona Computer Science Standards Page 50

Commented [BN52]: This format appears in some, but not
most sections. It would be better to use the same format
throughout.

5.APA.1

Compare, test, and refine multiple algorithms for the same task and determine which is the most appropriate.

Different algorithms can achieve the same result, though sometimes one algorithm might be most appropriate for a specific
situation. Students should be able to look at different ways to solve the same task and decide which would be the best solution.
For example, students could use a map and plan multiple algorithms to get from one point to another. They could look at routes
suggested by mapping software and change the route to something that would be better, based on which route is shortest or
fastest or would avoid a problem. Students might compare algorithms that describe how to get ready for school. Another example
might be to write different algorithms to draw a regular polygon and determine which algorithm would be the easiest to modify or
repurpose to draw a different polygon. Students test their algorithms to verify their effectiveness.

Practice(s)Testing and Refining Computational Artifacts, Recognizing and Defining Computational Problems: 6.1, 6.3

Subconcep

t: Variables (V)

5.AP.V.1

Create programs that use variables to store and modify data, recognizing that the data type determines the values that can be
stored and the operations that can be performed on the data.

Variables are the vehicle throligvhich computer programs store different types of data. At this level, understanding how to
variables is sufficient, without a fuller understanding of the technical aspects of variables (such as identifiers and memory
locations). Data types vary byggramming language, but many have types for numbers and text. Examples of operations
associated with those types are multiplying numbers and combining text. Some visuahasdedkanguages do not have explicit
declared types but still have certain optons that apply only to particular types of data in a program. Programs can imply eit
digital or paper based designs.

Practice(s)Creating Computational Artifacts: 5.2

Subconcep

t: Control (C)

5.AP.C.1

Create programs that include sequences, events, loops, and conditionals.

Control structures specify the order (sequence) in which instructions are executed within a program and can be compjoetl
the creation of more complex programs. For example, if dialogue is not sequenced cotrentlyregramming a simple animateq
story, the story will not make sense. If the commands to program a robot are not in the correct order, the robot wilpietecon|
the task desired. Events allow portions of a program to run based on a specific actiexarfple, students could write a prograr|
to explain the water cycle and when a specific component is clicked (event), the preguéthshow information about that part g
the water cycle. Loops allow for the repetition of a sequence of code multiple times. For example, in a program thatgsrodud
animation about a famous historical character, students could use a loop to hagkatexter walk across the screen as they
introduce themselves. Conditionals allow for the execution of a portion of code in a program when a certain conditidrais try

Draft Arizon

a Computer Science Standards Page 51

example, students could write a math game that asks multiplication fact questiahthan uses a conditional to check whether
not the answer that was entered is correct.
Practice(s): Creating Computational Artifacts: 5.2

Subconcep

t: Modularity (M)

5.AP.M.1

Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process.
Decomposition is the act of breaking down tasks into simpler tasks. Decomposition also enables different people to work g
different parts at the same time. For example, students could create an animation by s®paratory into dferent scenes. For
each scene, they would select a background, place characters, and program actions.

Practice(s): Recognizing and Defining Computational Problems: 3.2

5.AP.M.2

Modify, remix, or incorporate portions of an existing program into one's own work, to develop something new or add more
advanced features.

Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. For exampde,
could modify prewritten code from a singilayer game to create a twplayer game with slightly fiierent rules, remix and add
another scene to an animated story, use code to make a ball bounce from another program in a new basketball game, ar
image created by another student.

Practice(s): Creating Computational Artifacts: 5.3

Subconcep

t: Program Development (PD)

5.AP.PD.1

Use an iterative process to plan the development of a program by including others' perspectives and considering user
preferences.

Explanation: Planning is amportant part of the iterative process of program development. Students outline key features, tin
resource constraints, and user expectations. Students should document the plan as, for example, a storyboard, flowchart,
pseudocode, or story map.

Practice(s): Fostering an Inclusive Computing Culture, Creating Computational Artifacts: 1.1, 5.1

5.AP.PD.2

Observe intellectual property rights and give appropriate attribution when creating or remixing programs.
Explanationintellectual property rights can vary by country but copyright laws give the creator of a work a set of rights that
prevents others from copying the work and using it in waysktmgtmay not like. Students should identify instances of remixin
when ideas are borrowed and iterated upon, and credit the original creator. Students should also consider common litensg
place limitations or restrictions on the use of computationafacts, such as images and music downloaded fifmerinternet. At

Draft Arizon

a Computer Science Standards Page 52

‘ Commented [BN53]: Confusing word usage

this stage, attribution should be written in the format required by the teacher and should always be included on any progral
shared online.
Practice(s): Creating Computational Artifacts, Communicating About Computing: 5.2, 7.3

5.AP.PD.3

Test and debug (identify and fix errors) a program or algorithm to ensure it runs as intended.

Explanation: As students develop programs they should continuously test those programs to see that they @s ekpeeted
and fix (debug), any errors. Students should also be able to successfully debug simple errors in programs created by othe
Practice(s): Testing and Refining Computational Artifacts: 6.1, 6.2

5.AP.PD.4

Take on varying roles when collaborating with peers during the design, implementation, and review stages of program
development.

Explanation: Collaborative computing is the process of performing a computational task by working in pairs or on teaseitB
involves asking for the contributisrand feedback of othersffective collaboration can lead to better outcomes than working
independently. Students should take turns in different roles during program development, such as note taker, facilgedaon, pr
G§SaGSNE 2NJ GRNAGSNE 2F GKS O2YLlzi SNJ

Practice(s): Collaborating Around Computing: 2.2

5.AP.PD.5

Describe choices made during program development using code comments, presentations, and demonstrations.

Explanation: People communicate about their code to help others understand and upedheims. Another purpose of
communicating one's design choices is to show an understanding of one's work. These explanations could manifest thems
in-line code comments for collaborators and assessors, or as part of a summative presentatios,ssaotieawakthrough or
coding journal.

Practice(s): Communicating About Computing: 7.2

Essential Concept: Impacts of Computing (IC)

Subconcept: Culture (C)

5.C.C.1

Discuss computing technologies that have changed the world, and express how those technologies influence, and are influenced
by, cultural practices.

Explanation: New computing technology is created and existing technologies are modified for many reasons, includirtg in or
increase their benefits, decrease their risks, and meettaboieeds. Students discuss topics that relate to the history of technolg

Draft Arizona Computer Science Standards Page 53

and the changes in the world due to technology. Topics could be based on current news content, such as robotics,eniretess
mobile computing devices, GPS systems, weacaliguting, or how social media has influenced social and political changes.
Practice(s): Recognizing and Defining Computational Problems: 3.1

5.1C.C.2

Brainstorm and design ways to improve the accessibility and usability of technology products for the diverse needs and wants of
users.

QELX I yIFGA2YY ¢KS RSOSt2LIVYSYyld YR Y2RATAOFGAZ2Y 2F O#edtlidzl
groups diferently. Anticipating the needs and wants of diverse end users requires studentpdsgiully consider potential
perspectives of users withffdirent backgrounds, ability levels, points of view, and disabilities. For example, students may con
using both speech and text when they wish to convey information in a game. They may lalsovary the types of programs they
create, knowing that not everyone shatbeeir own tastes.

Practice(s): Fostering an Inclusive Computing Culture: 1.2

Subconcept: Social Interactions (SI)

5.C.SI.1

Seek opportunities for local and global collaboration to facilitate communication and innovation.
Computing influences many social institutions such as family, education, religion, and the economy. People can wathtin diff¢
places and at different timeto collaborate and share ideas when they use technologies that reach across the globe. Computi
provides the possibility for collaboration and sharing of ideas and allows the benefit of diverse perspectives. Thieseractials
affect how local ad global groups interact with each other, and alternatively, these interactions can change the nature of gro
For example, a class can discuss ideas in the same class, school, or in another state or nation through interactive webinars
Practice(s): Fostering an Inclusive Computing Culture: 1.1

Subconcept: Safety, Law, and Ethics (SLE)

5.C.
SLE.1

Use public domain or creative commons media, and refrain from copying or using material created by others without permission.
Ethical complications ariseom the opportunities provided by computing. The ease of sending and receiving copies of media
Internet, such as video, photos, and music, creates the opportunity for unauthorized use, such as online piracy anaflisregar
copyrights. Students shitwl consider the licenses on computational artifacts that they wish to use. For example, the license on
downloaded image or audio file may have restrictions that prohibit modification, require attribution, or prohibit use .entirel
Practice(s): Communicating About Computing: 7.3

Draft Arizona Computer Science Standards Page 54

Sixth Grade

By the end of sixth grade, students ’will\ explore how devices process data and address potential problems. They will investigate the process of
data transmission and the \need for security concerns‘. Individually and in small groups they will consider reliability and validity of computational
models used to process and represent data. They will identify possible solutions to programming challenges based on user needs. Successful
students lcan‘ implement programming skills using parameters to meet a project’s goal and timeline. Computer science literate students will be
able to identify the advantages and disadvantages of computing technologies in everyday activities, including bias, accessibility, and privacy.

Essential Concept: Computing Systems (CS)

Subconcept: Devices (D)

6.CS.D.1

Compare how computing devices are designed based on an analysis of how users interact with devices.
The study of humagtomputer interaction (HCI) can improve the desifidevices, including both hardware and software. Teach
can guide students to consider usability through several lenses.

Practice(s): Recognizing and Defining Computational Problems: 3.3

Subconcept: Hardware and Software (HS)

6.CS.HS.1

Explain how hardware and software can be used to collect and exchange data.

Collecting and exchanging data involves input, output, storage, and processing. For example, components for a mobile ap
include accelerometer, GPS, and speech recognition.

Practice(s): Creating Computational Artifacts: 5.1

Subconcept: Troubleshooting (T)

6.CS.T.1

Identify problems that occur in computing devices and their other components within a system.

Since a computing device may interact with interconnected devices withireansysbblems may not be due to the specific
computing device itself but to devices connected to it.

Practice(s): Testing and Refining Computational Artifacts: 6.2

Draft Arizona Computer Science Standards Page 55

Commented [BN54]:

Here too, some subconcept descriptions
include example student tasks and some do not. It would be better
to include examples for all subconcepts.

\/ Commented [BN55]:

Verb sense switch

Commented [BN56]:

0Odd word choice “need for security” or

“security concerns” would make more sense

\/ Commented [BN57]:

Verb tense switch

Essential Concept: Networks and the Internet (NI)

Subconcept: Cybersecurity (C)

6.NI.C.1

Identify multiple methods of encryption to secure the transmission of information.

ExplanationEncryption can be as simple as letter substitution or as complicated as modern methods used to secure network
Internet. The students will idéfy different methods of encoding and decoding for encryptions used to hide or secure informati
Practice(s)Developing and Using Abstractions: 4.4

6.NI.C.2

Identify different physical and digital security measures that protect electronic information.

Explanation: Information that is stored online is vulnerable to unwanted access. Examples of physical security meastars to
data include keeping passwords hidden, locking doors, making backup copies on external storage devices, andteragig a
device before it is reused. Examples of digital security measures include secure router admin passwords, firewallagdbesdirtat
private networks, and the use of a protocol such as HTTPS to ensure secure data transmission.

Practice(s): Communicating About Computing: 7.2

Subconcept: Network, Communication, and Organization (NCO)

6.NI.
NCO.1

Describe how protocols are used in transmitting data across networks and the Internet.
Explanation: Protocols are rules that define how messhgegeen computers are sent. They determine how quickly and secure
information is transmitted across networks and the Internet, as well as how to check for and handle errors in transimidsiis. S
should describe how data is sent using protocols teshdhe fastest path, to deal with missing information, and to deliver sensi
data securely. The priority at this level is understanding the purpose of protocols and how they enable secure and errorless
communication. Knowledge of the details of howdfic protocols work is not expected.

Practice(s): Developing and Using Abstractions: 4.4

Essential Concept: Data and Analysis (DA)

Subconcept: Collection, Visualization and Transformation (CVT)

6.DA.
CvT.1

Compare different computational tools used to collect data that is meaningful and useful.

As students continue to explore ways organize and present data visually to support a claim, they will need to understamd w
how to transform data for this purpose.

Practice(s): Testing and Refining Computational Artifacts: 6.3

Draft Arizona Computer Science Standards Page 56

Subconcept: Storage (S)

6.DAS.1

Identify multiple encoding schemes used to represent data, including binary and ASCII.

Students should explore the same data in multiple ways. For example, students could represent twosamimg binary, RGB
values, hex codes (lelevel representations), as well as forms understandable by people, including words, symbols, and digit
displays of the color (higlevel representations).

Practice(s): Developing and Using Abstractions: 4.0

Subconcept: Inference and Models (IM)

6.DA.
IM.1

Evaluate computational models based on reliability and validity.
A model may be a programmed simulation of events or a representation of how various data is related. In order to refele a1
students need to consider which data points are relevant, how data points relate to each other, and if the data is accurate.
Practice(s): Creating Computational Artifacts, Developing and Using Abstractions: 5.3, 4.4

Essential Concept: Algorithms and Programming (AP)

Subconcept: Algorithms (A)

6.AP.A.1

Identify planning strategies such as flowcharts or pseudocode, to address problems as algorithms.

Students shouldecognizeplanning strategies to organize and sequence an algorithm that addresses a problem, even thoug
may not actually program the solutions. For example, students might express an algorithm that prodiaesraendation for
purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost.

Practice(s): Developing and Using Abstractions: 4.4, 4.1

Subconcept: Variables (V)

6.AP.V.1

Identify variables that represent different data types and perform operations on their values.

A variable is like a container with a name, in which the contents may change, but the name (identifier) does not. Wimgn plal
and developing programs, students should decide when and how to declare and name nele@sva88taldents should use naming
conventions to improve program readability. Examples of operations include adding points to the score, combining us#r in
words to make a sentence, changing the size of a picture, or adding a name to a list of people.

Practice(s): Creating Computational Artifacts: 5.1, 5.2

Draft Arizona Computer Science Standards Page 57

Subconcept: Control (C)

6.AP.C.1

Design programs that combine control structures, including nested loops and compound conditionals.
Control structures can be combined in many ways. Nested loofsopeplaced within loops. Compound conditionals combineg
two or more conditions in a logical relationship (e.g., using AND, OR, and NOT), and nesting conditionals within orsl@musth
the result of one conditional to lead to another. For examplengrogramming an interactive story, students could use a
compound conditional within a loop to unlock a door only if a character has a key AND is touching the door.
Practice(s): Creating Computational Artifacts: 5.1, 5.2

Subconcept: Modularity (M)

6.AP.M.1 | Decompose problems into parts to facilitate the design, implementation, and review of programs.
Decompose problems into parts to facilitate the design, implementation, and review of programs.
Practice(s): Recognizing and Defining Computationdll@&res: 3.2

6.AP.M.2 | Use procedures to organize code and make it easier to reuse.

Students should compare procedures and/or functions that are used multiple times within a program to repeat groups of
instructions. These procedures can be generalizetktiying parameters that createféierent outputs for a wide range of inputs.
For example, a procedure to draw a circle involves many instructions, but all of them can be invoked with one instalctisn, 4
GRNI ¢/ ANDEt Sdé¢ . & | RRusefcn dasiNdral® kirdigs of ldifeleht ¥i&d. SNE (K S
Practice(s): Developing and Using Abstractions: 4.1, 4.3

Subconcept: Program Development (PD)

6.AP.PD.1

Seek and incorporate feedback from team members and users to refine a solution that meets user needs.

Development teams that employ ussgntered design create solutions (e.g., programs and devices) that can have a large so
impact, such as an app that allows people with speeffltdities to translate hardo-understand pronunciation into
understandable language. Students should begin to seek diverse perspectives throughout the design process to improve
computational artifacts. Considerations of the emgkr may include usability, accessibility, @p@ropriate content, respectful
language, user perspective, pronoun use, color contrast, and ease of use.

Practice(s): Collaborating Around Computing, Fostering an Inclusive Computing Culture: 2.3, 1.1

6.AP.PD.2

Incorporate existing code into programs and give attribution.
Building on the work of others enables students to produce more interesting and powerful creations. Students shouldnsse
of code in their own programs and websites. For example, when creatingsceidling game, students may incorporate portion

Draft Arizon

a Computer Science Standards Page 58

of code that create a realistic jump movement from another person's game, and they may also import Creative Sicemeds
images to use in the background. Students should give attribution to the original creators to acknowledge their costributio
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts, Communicating About Computing: 4.2,

6.AP.PD.3

Test programs using a range of inputs and identify expected outputs.
At this level, testing should become a deliberam:psihat is more iterative, systematic, and proactive than at lower Havels
Practice(s): Testing and Refining Computational Artifacts: 6.1

6.AP.PD.4

Adhere to a project timeline with specific tasks while collaboratively developing computational artifacts.

Collaboration is a common and crucial practice in programming developmigen, @any individuals and groups work on the
interdependent parts of a project together. Students should assumegfireed roles within their teams and manage the project
workflow using structured timelines.

Practice(s): Collaborating Around Computing: 2.

6.AP.PD.5

Document programs to make them easier to follow, test, and debug.

Documentation allows creators and others to more easily use and understand a program. Students should provide docum
for end users that explains their artifacts and hdweyt function. For example, students could provide a project overview and ¢
user instructions. They should also incorporate comments in their product and communicate their process throughout the
development, and user experience phases.

Practic€s): Communicating About Computing: 7.2

Essential Concept: Impacts of Computing (IC)

Subconcept: Culture (C)

6.IC.C.1

Identify some of the tradeoffs associated with computing technologies that can affect people's everyday activities and career
options.

Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing
technologies have tradeoffs. Students should consider current events related to broad ideas, including privacy, communication, and
automation. For example, driverless cars can increase convenience and reduce accidents, but they are also susceptible to hacking.
The emerging industry will reduce the number of taxi and shared-ride drivers but will create more software engineering and
cybersecurity jobs.

Practice(s): Communicating About Computing: 7.2

Draft Arizona Computer Science Standards Page 59

Commented [BN58]: This is not useful for a specific teacher of
a given grade. They are unlikely to have read previous grade info,
and need specific information relevant to their own classroom.

6.IC.C.2

Identify issues of bias and accessibility in the design of existing technologies.

Students should identify, with teacher’s guidance, how various technological tools have different levels of usability. For example,
facial recognition software that works better for certain skin tones was likely developed with a homogeneous testing group and
could be improved by sampling a more diverse population. Identifying accessibility to technological tools can include allowing a user
to change font sizes and colors will not only make an interface usable for people with low vision but also benefits users in various
situations, such as in bright daylight or a dark room.

Practice(s): Fostering an Inclusive Computing Culture: 1.2

Subconcept: Social Interactions (SI)

6.1C.SI.1

Identify the advantages of creating a computational product by collaborating with others using digital technologies.

Different digital technologies can be used to gather services, ideas, or content from a large group of people, especially from the
online community. It can be done at the local level (e.g., classroom or school) or global level (e.g., age-appropriate online
communities). For example, a group of students could combine animations to produce a digital community creation. They could also
solicit feedback from many people though use of online communities and electronic surveys.

Practice(s): Collaborating Around Computing, Creating Computational Artifacts: 2.4, 5.2

Subconcept: Safety, Law, and Ethics (SLE)

6.IC.
SLE.1

Describe how some digital information can be public or can be kept private and secure.

Sharing information online can help establish, maintain, and strengthen connections between people. Students should consider
current events related to broad ideas, including privacy, communication, and automation.

Practice(s): Communicating About Computing: 7.2

Draft Arizona Computer Science Standards Page 60

Seventh Grade

By the end of seventh grade, students can evaluate how devices process data and address potential problems through project development.
They will investigate the need for security measures and protocols for data transmission. Successful students lwill be ‘able to integrate reliable
and valid computational models to process data that is meaningful and useful. They can evaluate possible solutions to programming challenges
based on the user’s needs. Students can compare and contrast possible solutions utilizing computing technologies to solve everyday challenges,
taking into consideration bias, accessibility, and privacy. Computer science literate students will implement programming skills using parameters
to meet a project’s goal and timeline.

Essential Concept: Computing Systems (CS)

Subconcept: Devices (D)

7.CS.D.1

Identify some advantages, disadvantages, and consequences with the design of computer devices based on an analysis of how
users interact with devices.

The study of humagtomputer interaction (HCI) can improve the design of devices, including both hardware and sofeateers
can guide students to consider usability through several lenses, including accessibility, ergonomics, and learnakdityplEor e
assistive devices provide capabilities such as scanning written information and converting it to speech.

Practicés): Recognizing and Defining Computational Problems: 3.3

Subconcept: Hardware and Software (HS)

7.CS.HS.1

Design projects that combine hardware and software to collect and exchange data.

Collecting and exchanging data involves input, output, storageé pancessing. When possible, students should select the hard
and sdtware components for their project designs by considering factors such as functionality, cost, size, speed, accessibil
aesthetics. For example, components for a mobile applénalude accelerometer, GPS, and speech recognition.

Practice(s): Creating Computational Artifacts: 5.1

Subconcept: Troubleshooting (T)

Draft Arizona Computer Science Standards Page 61

Commented [BN59]: Verb tense shift

7.CS.T.1

Evaluate solutions to fix problems with computing devices and their other components within a system.

Sincea computing device may interact with interconnected devices within a system, problems may not be due to the specifi
computing device itself but to devices connected to it. Examples of troubleshooting strategies include following a tobinigiesh
flow diagram, making changes to Bware to see if hardware will work, checking connections and settings, and swapping in
working components.

Practice(s): Testing and Refining Computational Artifacts: 6.2

Essential Concept: Networks and the Internet (NI)

Subconcept: Cybersecurity (C)

7.NI.C.1

Evaluate multiple methods of encryption to model the secure transmission of information.

Encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the Internet.
The students will examine the different levels of complexity used to hide or secure information. For example, students explore
different methods of securing messages using methods such as Caesar cyphers or steganography (i.e., hiding messages inside a
picture or other data).

Practice(s)Developing and Using Abstractions: 4.4

7.NI.C.2

Explain how physical and digital security measures protect electronic information.

Information that is stored online is vulnerable to unwanted access. Examples of physical security measures to protect data include
keeping passwords hidden, locking doors, making backup copies on external storage devices, and erasing a storage device before it is
reused. Examples of digital security measures include secure router admin passwords, firewalls that limit access to private networks,
and the use of a protocol such as HTTPS to ensure secure data transmission.

Practice(s): Communicating About Computing: 7.2

Subconcept: Network, Communication, and Organization (NCO)

7.NL.
NCO.1

Compare and contrast models to illustrate the role of protocols in transmitting data across networks and the Internet.

Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is
transmitted across networks and the Internet, as well as how to check for and handle errors in transmission. Students should
examine how data is sent using protocols to choose the fastest path, to deal with missing information, and to deliver sensitive data
securely. The priority at this level is understanding the purpose of protocols and how they enable secure and errorless
communication. Knowledge of the details of how specific protocols work is not expected.

Draft Arizona Computer Science Standards Page 62

‘ Practice(s): Developing and Using Abstractions: 4.4

Essenti

al Concept: Data and Analysis (DA)

Subconcept: Collection, Visualization and Transformation (CVT)

7.DA.
CVT.1

Collect data using computational tools to create models that are meaningful and useful.

As students continue to build on their abilityai@anize and present data visually to support a claim, they will need to understa
when and how to transform data for this purpose.

Practice(s): Testing and Refining Computational Artifacts: 6.3

Subconcept: Storage (S)

7.DA.S.1

Utilize multiple encoding schemes to represent data, including binary and ASCII.

Students should represent the same data in multiple ways. For example, students could represent the same color usR@ghoin
values, hex codes (lel@vel representations), as well as formmaerstandable by people, including words, symbols, and digital
displays of the color (higlevel representations).

Practice(s): Developing and Using Abstractions: 4.0

Subconcept: Inference and Models (IM)

7.DA.IM.
1

Design computational models based on reliability and validity of the data they generate.

A model may be a programmed simulation of events or a representation of how various data are related. In order to refeie ¢
students need to consider which data points are relevant, how dataspe@itate to each other, and if the data are accurate. For
example, students may make a prediction about how far a ball will travel based on a table of data related to the heiggteanfi
a track.

Practice(s): Creating Computational Artifacts, Developing and Using Abstractions: 5.3, 4.4

Essenti

al Concept: Algorithms and Programming (AP)

Subconcept: Algorithms (A)

Draft Arizona Computer Science Standards Page 63

7.AP.A.1

Use planning strategies, such as flowcharts or pseudocode, to address complex problems as algorithms.

Complex problems are problems that would be difficult for students to solve computationally. Students should use pseudd
and/or flowcharts to organize and sequence an algorithm that addresses a complex problem, even though they may not a
programthe solutions. For example, students mifgilow an algorithm that produces a recommendation for purchasing sneak
based on inputs such as size, colors, brand, comfort, and cost.

Practice(s): Developing and Using Abstractions: 4.4, 4.1

Subconcep

t: Variables (V)

7.AP.V.1

Compare and contrast variables that represent different data types and perform operations on their values.

A variable is like a container with a name, in which the contents may change, but the name (identifier) does not. Wimgn pla
and developing programs, students should decide when and how to declare and name new variables. Students should us¢
conventions to improve program readability. Examples of operations include adding points to the score, combining us#r in
words to make a sentence, changing the size of a picture, or adding a name to a list of people.

Practice(s): Creating Computational Artifacts: 5.1, 5.2

Subconcep

t: Control (C)

7.AP.C.1

Design and develop programs that combine control structures, including nested loops and compound conditionals.

Control structures can be combined in many ways. Nested loops are loops placed within loops. Compound conditionals ¢
two or more conditions in a logical relationship (e.g., using AND, OR, andaN@®mgsting conditionals within one another allow
the result of one conditional to lead to another. For example, when programming an interactive story, students could use a
compound conditional within a loop to unlock a door only if a character has/AaN@yis touching the door.

Practice(s): Creating Computational Artifacts: 5.1, 5.2

Subconcep

t: Modularity (M)

7.AP.M.1

Decompose problems into parts to facilitate the design, implementation, and review of programs.
|Decompose problems into partsfaxilitate the design, implementation, and review of progrﬁms.
Practice(s): Recognizing and Defining Computational Problems: 3.2

7.AP.M.2

Use procedures with parameters to organize code and make it easier to reuse.
Students should use procedures and(orctions that are used multiple times within a program to repeat groups of instruction
These procedures can be generalized by defining parameters that criéaterdioutputs for a wide range of inputs. For exampl

Draft Arizon

a Computer Science Standards Page 64

Commented [BN60]: Just a repeat of the subconcept

proceduretodraw acircley @2t @Sa Yl ye AyaidNHzOGA2yas odzi Fff 2F GKSY
adding a radius parameter, the user can easily draw circles of different sizes.
Practice(s): Developing and Using Abstractions: 4.1, 4.3

Subconcep

t: Program Development (PD)

7.AP.PD.1

Seek and incorporate feedback from team members and users to refine a solution that meets user needs.

Development teams that employ ussgntered desigbreatésolutions (e.g., programs and devices) that can have a large socig
impact, such as an app that allows people with speefledities to translate hardo-understand pronunciation into
understandable language. Students should begin to seek diversgeeptves throughout the design process to improve their
computational artifacts. Considerations of the emgkr may include usability, accessibility, @p@ropriate content, respectful
language, user perspective, pronoun use, color contrast, and ease.of

Practice(s): Collaborating Around Computing, Fostering an Inclusive Computing Culture: 2.3, 1.1

7.AP.PD.2

Incorporate existing code and media into programs and give attribution.

Building on the work of others enables students to produce more iniegestd powerful creations. Students should use portior
of code and/or digital media in their own programs and websites. For example, when creatingaslitegy game, students may
incorporate portions of code that create a realistic jump movememh fraother person's game, and they may also import Creg
Commondicensed images to use in the background. Students should give attribution to the original creators to acknowled
contributions.

Practice(s): Developing and Using Abstractions,t@ge@omputational Artifacts, Communicating About Computing: 4.2, 5.2, 7|

7.AP.PD.3

Systematically test and refine programs using a range of possible inputs.

At this level, testing should become a deliberate procesﬁshabre iterative, systematic, and proactive than at lower Iepels.
Students should begin to test programs by considering potential errors, such as what will happen if a user entersunvyelil,in
negative numbers and 0 instead of positive numbers)

Practice(s): Testing and Refining Computational Artifacts: 6.1

7.AP.PD.4

Distribute and execute tasks while maintaining a project timeline when collaboratively developing computational artifacts.
Collaboration is a common and crucial practice in prognamg development. ffen, many individuals and groups work on the
interdependent parts of a project together. Students should assumeégfireed roles within their teams and manage the project
workflow using structured timelines. With teacher guidance, they will begin to areliéetive goals, expectations, and equitablg
workloads. For example, students may divide the design stage of a game into planning the storyboard, flowchart, and diffe
parts of the game mechanicBhey can then distribute tasks and roles among memifairee team and assign deadlines.

Practice(s): Collaborating Around Computing: 2.2

Draft Arizona Computer Science Standards Page 65

| Commented [BN61]: To create?

Commented [BN62]: Not useful for a given teacher in a given
grade. They don’t know what is contained in earlier grade levels

7.AP.PD.5

Document programs in order to make them easier to follow, test, and debug.
Documentation allows creators and others to more easily use and understand a pr&guaients should provide documentation
for end users that explains their artifacts and how they function. For example, students could provide a project ovenleaw ar
user instructions. They should also incorporate comments in their product and coruetingir process throughout the design,
development, and user experience phases.

Practice(s): Communicating About Computing: 7.2

Essential Concept: Impacts of Computing (IC)

Subconcept: Culture (C)

7.IC.C.1 | Explain how some of the tradeoffs associated with computing technologies can affect people's everyday activities and career
options.
Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing
technologies have tradeoffs. Students should consider current events related to broad ideas, including privacy, communication, and
automation. For example, driverless cars can increase convenience and reduce accidents, but they are also susceptible to hacking.
The emerging industry will reduce the number of taxi and shared-ride drivers, but will create more software engineering and
cybersecurity jobs.
Practice(s): Communicating About Computing: 7.2

7.IC.C.2 | Discuss issues of bias and accessibility in the design of existing technologies.

Students should discuss the usability of various technology tools (e.g., apps, games, and devices) with the teacher's guidance. For
example, facial recognition software that works better for certain skin tones was likely developed with a homogeneous testing group
and could be improved by sampling a more diverse population. When discussing accessibility, students may notice that allowing a
user to change font sizes and colors will not only make an interface usable for people with low vision but also benefits users in
various situations, such as in bright daylight or a dark room.

Practice(s): Fostering an Inclusive Computing Culture: 1.2

Subconcept: Social Interactions (SI)

Draft Arizona Computer Science Standards Page 66

7.CSlL.1

Describe the process for creating a computational product by collaborating with others using digital technologies.

Crowdsourcing can be used as a platform to gather services, ideas, or content from a large group of people, especially from the
online community. It can be done at the local level (e.g., classroom or school) or global level (e.g., age-appropriate online
communities). For example, a group of students could combine animations to produce a digital community creation. They could also
solicit feedback from many people though use of online communities and electronic surveys.

Practice(s): Collaborating Around Computing, Creating Computational Artifacts: 2.4, 5.2

Subconcept: Safety, Law, and Ethics (SLE)

7.1C.
SLE.1

Identify the benefits and risks associated with sharing information digitally.

Sharing information online can help establish, maintain, and strengthen connections between people. For example, it allows artists
and designers to display their talents and reach a broad audience. However, security attacks often start with personal information
that is publicly available online. Social engineering is based on tricking people into revealing sensitive information and can be
thwarted by being wary of attacks, such as phishing and spoofing.

Practice(s): Communicating About Computing: 7.2

Draft Arizona Computer Science Standards

Page 67

Eighth Grade

By the end of eight grade, students will apply programming skills to process data and address problems using computing devices. They will implement security
measures and protocols for data transmission to address vulnerabilities. Successful students can integrate possible solutions to programming challenges based
on the user’s needs. They will achieve this by implementing programming skills using parameters to meet a project’s goal and timeline. Students will be able to
utilize computing technologies and develop possible solutions to solve everyday challenges, taking into consideration bias, accessibility, and privacy. Computer
science literate students will be able to collect and represent reliable and valid computational models.

Essential Concept: Computing Systems (CS)

Subconcept: Devices (D)

8.CS.D.1

Improve the design of computing devices based on an analysis of how users interact with devices, including identifying that
some advantages may have disadvantages and unintended consequences.

The study of humagtomputerinteraction (HCI) can improve the design of devices, including both hardware and software. St
should make recommendations for existing devices (e.g., a laptop, phone, or tablet) or design their own componentger int
(e.g., create their own cortllers). Teachers can guide students to consider usability through several lenses, including acceg
ergonomics, and learnability. For example, assistive devices provide capabilities such as scanning written information and
converting it to speech.

Practice(s): Recognizing and Defining Computational Problems: 3.3

Subconcept: Hardware and Software (HS)

8.CS.HS.1

Design and evaluate projects that combine hardware and software components to collect and exchange data.
Collecting and exchanging datavoives input, output, storage, and processing. When possible, students should select the hg
and sdtware components for their project designs by considering factors such as functionality, cost, size, speed, accessibil
aesthetics. For examplepmponents for a mobile app could include accelerometer, GPS, and speech recognition. The choid
device that connects wirelessly through a Bluetooth connection versus a physical USB connection involvéshe tnaetao
mobility and the need for aadditional power source for the wireless device.

Practice(s): Creating Computational Artifacts: 5.1

Subconcept: Troubleshooting (T)

Draft Arizona Computer Science Standards Page 68

8.CS.T.1

Systematically identify and develop solutions to fix problems with computing devices and their components.
Sincea computing device may interact with interconnected devices within a system, problems may not be due to the specifi
computing device itself but to devices connected to it. Just as pilots use checklists to troubleshoot problems ftidystieons,
students should use a similar, structured process to troubleshoot problems with computing systems and ensure that potent
solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, mak
changes tasdtware to see if hardware will work, checking connections and settings, and swapping in working components.
Practice(s): Testing and Refining Computational Artifacts: 6.2

Essential Concept: Networks and the Internet (NI)

Subconcept: Cybersecurity (C)

8.NI.C.1

Apply multiple methods of encryption to model the secure transmission of information.

Explanation:Encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and
the Internet. Students should encode and decode messages using a variety of encryption methods, and they should understand the
different levels of complexity used to hide or secure information. For example, students could secure messages using methods such
as Caesar cyphers or steganography (i.e., hiding messages inside a picture or other data). They can also model more complicated
methods, such as public key encryption, through unplugged activities.

Practice(s)Developing and Using Abstractions: 4.4

8.NI.C.2

Evaluate how various physical and digital security measures protect electronic information and how a lack of such measures could
lead to vulnerabilities.

Information that is stored online is vulnerable to unwanted access. Examples of physical security measures to protect data include
keeping passwords hidden, locking doors, making backup copies on external storage devices, and erasing a storage device before it is
reused. Examples of digital security measures include secure router admin passwords, firewalls that limit access to private networks,
and the use of a protocol such as HTTPS to ensure secure data transmission. Examples of vulnerabilities include password strength,
awareness of how data is utilized, as well as threats to personal and professional data.

Practice(s): Communicating About Computing: 7.2

Subconcept: Network, Communication, and Organization (NCO)

8.NI.
NCO.1

Develop models to illustrate the role of protocols in transmitting data across networks and the Internet.

Draft Arizona Computer Science Standards Page 69

Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is
transmitted across networks and the Internet, as well as how to check for and handle errors in transmission. Students should model
how data is sent using protocols to choose the fastest path, to deal with missing information, and to deliver sensitive data securely.
For example, students could devise a plan for resending lost information or for interpreting a picture that has missing pieces. The
priority at this level is understanding the purpose of protocols and how they enable secure and errorless communication. Knowledge
of the details of how specific protocols work is not expected.

Practice(s): Developing and Using Abstractions: 4.4

Essential Concept: Data and Analysis (DA)

Subconcept: Collection, Visualization and Transformation (CVT)

8.DA.
CVT.1

Collect data using computational tools and transform the data to make it more meaningful and useful.
As students continue to build on their ability to organize and presentuigally to support a claim, they will need to understand
when and how to transform data for this purpose. Students should transform data to remove errors, highlight or expose
relationships, and/or make it easier for computers to process. The cleaniatpa$ én important transformation for ensuring
consistent format and reducing noise and errors (e.g., removing irrelevant responses in a survey). An example of a tiamsfor|
that highlights a relationship is representing males and females as percemégevhole instead of as individual counts.
Practice(s): Testing and Refining Computational Artifacts: 6.3

Subconcept: Storage (S)

8.DAS.1

Represent data using multiple encoding schemes through modeling, including binary and ASCII.

Datarepresentations occur at multiple levels of abstraction, from the physical storage of bits to the arrangement of infammat
organized formats (e.g., tables). Students should represent the same data in multiple ways. For example, students seundd re
the same color using binary, RGB values, hex codegeflelwepresentations), as well as forms understandable by people, incly
words, symbols, and digital displays of the color ¢yl representations).
Practice(s): Developing and Using Abstractions: 4.0

Subconcept: Inference and Models (IM)

8.DA.IM.
1

Design and evaluate computational models based on the reliability and validity of the data they generate.

Draft Arizona Computer Science Standards Page 70

other factors are relevant (e.g., size and mass of the ball). Additipsaidents could refine game mechanics based on test
outcomes in order to make the game more balanced or fair.
Practice(s): Creating Computational Artifacts, Developing and Using Abstractions: 5.3, 4.4

A model may be a programmed simulation of events or a representation of howsddta is related. In order to refine a model,
students need to consider which data points are relevant, how data points relate to each other, and if the data is &oeurate.
example, students may make a prediction about how far a ball will travel masadable of data related to the height and angle
a track. The students could then test and refine their model by comparing predicted versus actual results and consitie¥ing w

Essential Concept: Algorithms and Programming (AP)

Subconcept: Algorithms (A)

8.AP.A.1

Develop planning strategies, such as flowcharts or pseudocode, to address complex problems as algorithms.

Complex problems are problems that would be difficult for students to solve computationally. StudentsshpsklLidocode
and/or flowcharts to organize and sequence an algorithm that addresses a complex problem, even though they may not a
program the solutions. For example, students might express an algorithm that produces a recommendation for psrodasing
based on inputs such as size, colors, brand, comfort, and cost. Testing the algorithm with a wide range of inputs diesvasers
students to refine their recommendation algorithm and to identify other inputs they may have initially excluded.
Practice(s): Developing and Using Abstractions: 4.4, 4.1

Subconcept: Variables (V)

8.AP.V.1

Create clearly named variables that represent different data types and perform operations on their values.

A variable is like a container with a name, in whichabetents may change, but the name (identifier) does not. When plannin
and developing programs, students should decide when and how to declare and name new variables. Students should ust
conventions to improve program readability. Examples of opmratinclude adding points to the score, combining user input w
words to make a sentence, changing the size of a picture, or adding a name to a list of people.
Practice(s): Creating Computational Artifacts: 5.1, 5.2

Subconcept: Control (C)

Draft Arizona Computer Science Standards Page 71

8.AP.C.1 | Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.
Control structures can be combined in many ways. Nested loops are loops placed within loops. Compound conditionals c
two or moreconditions in a logical relationship (e.g., using AND, OR, and NOT), and nesting conditionals within one anothg
the result of one conditional to lead to another. For example, when programming an interactive story, students could use a
compound coditional within a loop to unlock a door only if a character has a key AND is touching the door.
Practice(s): Creating Computational Artifacts: 5.1, 5.2

Subconcept: Modularity (M)

8.AP.M.1 | Decompose problems into parts to facilitate the design, implementation, and review of programs.
Programs use procedures to organize code, hide implementation details, and make code easier to reuse. Procedures can
repurposed in new programs
Practice(s): Recognizing and Defining Computational Problems: 3.2

8.AP.M.2 | Create procedures with parameters to organize code and make it easier to reuse.
Students should create procedures and/or functions that are used multiple times within a program to repeat groups abmsstr
These procedures can be generalizgdiefining parameters that createfidirent outputs for a wide range of inputs. For exampl
LINE OSRdzNBE G2 RNIg | OANDIS Ay@2f @dSa Ylye AyailiNdzOiisz@dE
adding a radius parametethe user can easily draw circles of different sizes.
Practice(s): Developing and Using Abstractions: 4.1, 4.3

Subconcept: Program Development (PD)

8.AP.PD.1 | Seek and incorporate feedback from team members and users to refine a solution that meets user needs.
Development teams that employ ussgntered design create solutions (e.g., programs and devices) that can have a large so
impact, such as an app that allows people with speeffltdities to translate hardo-understand pronunciation into
understandable language. Students should begin to seek diverse perspectives throughout the design process to improve
computational artifacts. Considerations of the emgkr may include usability, accessibility, @gp@ropriate content, respectful
language, user perspective, pronoun use, color contrast, and ease of use.
Practice(s): Collaborating Around Computing, Fostering an Inclusive Computing Culture: 2.3, 1.1

8.AP.PD.2 | Incorporate existing code, media, and libraries into original programs, and give attribution.
Building on the work of others enables students to produce more interesting and powerful creations. Students shouldnsse
of code, algorithms, and/or digital media in their own programs and websites. At this level, they may alsdilimgizs and
connect to web application program interfaces (APIs). For example, when creatingsearsitieg game, students may incorporat

Draft Arizona Computer Science Standards Page 72

portions of code that create a realistic jump movement from another person's game, and they may also impigg Cogamons
licensed images to use in the background. Students should give attribution to the original creators to acknowledge their

contributions.

Practice(s): Developing and Using Abstractions, Creating Computational Artifacts, Communicatir@ofmuitng: 4.2, 5.2, 7.3

8.AP.PD.3

Systematically test and refine programs using a range of possible inputs.

At this level, testing should become a deliberate process thal)ris iterative, systematic, and proactive than at lower Iévels
Studentsshouldbegin to test programs by considering potential errors, such as what will happen if a useiresatidsnput (e.g.,
negative numbers and 0 instead of positive numbers).

Practice(s): Testing and Refining Computational Artifacts: 6.1

8.AP.PD.4

Distribute and execute tasks while maintaining a project timeline when collaboratively developing computational artifacts.
Collaboration is a common and crucial practice in programming developmiean, @any individuals and groups work on the
interdependenparts of a project together. Students should assumedeféed roles within their teams and manage the project
workflow using structured timelines. With teacher guidance, they will begin to create collective goals, expectationsiainid eq
workloads For example, students may divide the design stage of a game into planning the storyboard, flowchart, and differ|
parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines
Practice(s): Collaboraig Around Computing: 2.2

8.AP.PD.5

Document programs in order to make them easier to follow, test, and debug.

Documentation allows creators and others to more easily use and understand a program. Students should provide docum
for end users thatxplains their artifacts and how they function. For example, students could provide a project overview and
user instructions. They should also incorporate comments in their product and communicate their process throughout the
development, andiser experience phases.

Practice(s): Communicating About Computing: 7.2

Essential Concept: Impacts of Computing (IC)

Subconcept: Culture (C)

8.IC.C.1

Compare and contrast tradeoffs associated with computing technologies that affect people's everyday activities and career
options.

Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing
technologies have tradeoffs. Students should consider current events related to broad ideas, including privacy, communication, and

Draft Arizona Computer Science Standards Page 73

Commented [BN63]:
grade.

Not useful for a specific teacher in a given

automation. For example, driverless cars can increase convenience and reduce accidents, but they are also susceptible to hacking.
The emerging industry will reduce the number of taxi and shared-ride drivers, but will create more software engineering and
cybersecurity jobs.

Practice(s): Communicating About Computing: 7.2

8.IC.C.2

Develop a solution to address an issue of bias or accessibility in the design of existing technologies.

Students should test and discuss the usability of various technology tools (e.g., apps, games, and devices) with the teacher's
guidance. For example, facial recognition software that works better for certain skin tones was likely developed with a homogeneous
testing group and could be improved by sampling a more diverse population. When discussing accessibility, students may notice that
allowing a user to change font sizes and colors will not only make an interface usable for people with low vision but also benefits
users in various situations, such as in bright daylight or a dark room.

Practice(s): Fostering an Inclusive Computing Culture: 1.2

Subconcept: Social Interactions (SI)

8.IC.SI.1

Collaborate with contributors by utilizing digital technologies when creating a computational product.

Crowdsourcing can be used as a platform to gather services, ideas, or content from a large group of people, especially from the
online community. It can be done at the local level (e.g., classroom or school) or global level (e.g., age-appropriate online
communities). For example, a group of students could combine animations to produce a digital community creation. They could also
solicit feedback from many people though use of online communities and electronic surveys.

Practice(s): Collaborating Around Computing, Creating Computational Artifacts: 2.4, 5.2

Subconcept: bafety, Law, and Ethics (SLE)‘

8.IC.
SLE.1

Evaluate the benefits and risks associated with sharing information digitally.

Sharing information online can help establish, maintain, and strengthen connections between people. For example, it allows artists
and designers to display their talents and reach a broad audience. However, security attacks often start with personal information
that is publicly available online. Social engineering is based on tricking people into revealing sensitive information and can be
thwarted by being wary of attacks, such as phishing and spoofing.

Practice(s): Communicating About Computing: 7.2

Draft Arizona Computer Science Standards Page 74

Commented [BN64]: No example student tasks/activities

High School

By the end of High School, students refine their skills in differentiating problems or subproblems that are best solved by computing systems or
digital tools and those that are best solved by humans. Students further develop their computational thinking and problem-solving skills which
will facilitate the selection and appropriate use of technology. They can also evaluate security measures to protect sensitive data. Students will
utilize data visualizations to represent and communicate real-world phenomena. Successful students consider the scalability and reliability of
networks, including data storage; and utilize algorithms to develop computational solutions to solve real-world challenges collaboratively; they
implement computational solutions across disciplines, taking into consideration innovation, privacy, bias, equity, personal, ethical, social,
economic, and cultural practices. Computer science literate students will be able to explore how abstractions are integrated in computing
systems within software and hardware. They build on K-8 experiences and learn more technical and sophisticated applications.

Essential Concept: Computing Systems (CS)

Subconcept: Devices (D)

HS.CS.D.1

Explain how abstractions hide the underlying implementation details of computing systems embedded in everyday objects.
Computing devices are often integrated with other systems, including biological, mechanical, and social systems. A viwglic
can be embedded inside a person to monitor and regulate his or her health, a hearing aid (a type of assistive devare)wan f
OSNIFAY FTNBIljdzSyOAasSa IyR YI3IyAaAFe 20KSNAZ || Y2y Ad2NAyand R
habits, and a facial recognition device can be integrated into a security system to identify a person. The depbilitiability,
security, and accessibility of these devices, and the systems they are integrated with, are important consideratiodgsithais
they evolve. The creation of integrated or embedded systems is not an expectation at this level.

Practi@(s):Developing and Using Abstractions: 4.1

Subconcept: Hardware and Software (HS)

HS.CS.
HS.1

Compare levels of abstraction and interactions between application software, system software, and hardware layers.

At its most basic level, a computer is gmseed of physical hardware and electrical impulses. Multiple layers of software are b
upon the hardware and interact with the layers above and below them to reduce complexity. System software manages a
O2YLlziAy3d RSOAOSQa NEikteadzMith Bardware Foii dkamiple, &t &diling Isdftdare Gitergicts with the
operating system to receive input from the keyboard, convert the input to bits for storage, and interpret the bits a® reatiadl
display on the monitor. System softwareisgd on many different types of devices, such as smart TVs, assistive devices, virt

Draft Arizona Computer Science Standards Page 75

components, cloud components, and drones. For example, students may explore the progression from voltage to binary si
logic gates to adders and so on. Knowledfyspecific, advanced terms for computer architecture, such as BIOS, kernel, or bu
not expected at this level.

Practice(s)Developing and Using Abstractions: 4.1

Subconcept: Troubleshooting (T)

HS.CS.T.1

Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.
Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and implementig {
solutions. Troubleshooting also relies on experieswoeh as when people recognize that a problem is similar to one they have
before or adapt solutions that have worked in the past. Examples of complex troubleshooting strategies include resolving
connectivity problems, adjusting system configurationd settings, ensuring hardware and software compatibility, and
transferring data from one device to another. Students could create a flow chart, a job aid for a help desk employegeot an
system.

Practice(s)Testing and Refining Computational Artifacts: 6.2

Essential Concept: Networks and the Internet (NI)

Subconcept: Cybersecurity (C)

HS.NI.C.1 | Give examples to illustrate how sensitive data can be affected by malware and other attacks.
Network security depends on a combination of hardwsofware, and practices that control access to data and systems. Pote
security problems, such as denidiservice attacks, ransomware, viruses, worms, spyware, and phishing, present threats to
sensitive data. Students might reflect on case studiesiwent events in which governments or organizations experienced datg
leaks or data loss as a result of these types of attacks.
Practice(s): Communicating About Computing: 7.2

HS.NI.C.2 | Recommend security measures to address various scenarios based on factors such as efficiency, feasibility, and ethical impacts.

Security measures may include physical security tokensfator authentication, and biometric verification. The timely and
reliable access to data and information services by authorized usfaged to as availability, is ensured through adequate
bandwidth, backups, and other measures. Students should systematically evaluate the feasibility of using computatitmal to|
solve given problems or subproblems, such as through @easfit andysis. Eventually, students should include more factors i
their evaluations, such as how efficiency affects feasibility or whether a proposed approach raises ethical concerns.

Draft Arizona Computer Science Standards Page 76

Practice(s): Recognizing and Defining Computational Problems: 3.3

HS.NI.C.3

Compare various security measures, considering tradeoffs between the usability and security of a computing system.

Choosing security measures involves tradeoffs between the usability and security of the system. The needs of users and t
sensitivity of datadetermine the level of security implemented. Students might discuss computer security policies in place at
local level that present a tradeoff between usability and security, such as a web filter that prevents access to maoyna@ditesi
but keepghe campus network safe.

Practice(s): Testing and Refining Computational Artifacts: 6.3

Subconcept: Network, Communication, and Organization (NCO)

HS.NI.
NCO.1

Evaluate the scalability and reliability of networks, by describing the relationship between routers, switches, servers, topology,
and addressing.

Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing IP addresses
determine the pathways packets should take to reach their destination.t&sifanction by comparing MAC addresses to
determine which computers or network segments will receive frames. Students could use online network simulators to exp
with these factors.

Practice(s): Developing and Using Abstractions: 4.1

Essential Concept: Data and Analysis (DA)

Subconcept: Collection, Visualization and Transformation (CVT)

HG.DA.
CVT.1

Create interactive data visualizations using software tools to help others better understand real-world phenomena.

People use software tools programming to create powerful, interactive data visualizations and perform a range of mathem
operations to transform and analyze data. Students should model phenomena as systems, with rules governing the intera
within the system and evaluat@ése models against realorld observations.

Practice(s)Developing and Using Abstractions: 4.4

Subconcept: Storage (S)

Draft Arizona Computer Science Standards Page 77

HS.DA.S.1

Translate between different bit representations of real-world phenomena, such as characters, numbers, and images.
Understand that most computing systems use different numerical representations-ofim@rical data. For example, convert
hexadecimal color codes to decimal numbers, or represent characters in their ASCII/Unicode representation.
Practice(s)Developing ad Using Abstractions: 4.1

HS.DA.S.2

Evaluate the tradeoffs in how and where data is stored.
People make choices about how and where data is stored. Students might consider the cost, speed, reliability, aquessilyilit
and integrity tradeoffs between storing photo data on a mobile device versus in the cloud. Students should evaluatewheth
chosen solution is most appropriate for a particular problem.

Practice(s)Recognizing and Defining Computational Problems: 3.3

Subconcept: Inference and Models (IM)

HS.DA.
IM.1

Analyze computational models that represent relationships to help others better understand real-world phenomena.
Computational models make predictions about processes or phenomenon based on selected data and features that can b
represented in a spreadsheet or other organizational software. The amount, quality, and dofedsiiy and the features chosen
can affect the quality of a model and ability to understand a system. Predictions or inferences are tested to validate model
Students should model phenomena as systems, with rules governing the interactions withinetime Systlents should analyze
and evaluate these models against reairld observations.

Practice(s)Developing and Using Abstractions: 4.4

Essential Concept: Algorithms and Programming (AP)

Subconcept: Algorithms (A)

HS.AP.A.1

Create prototypes that use algorithms for practical intent, personal expression, or to address a societal issue
A prototype is a computational artifact that demonstrates the core functionality of a product or process. Prototypesuhferuse
getting early feedback in the desigrocess, and can yield insight into the feasibility of a product. The process of developing
computational artifacts embraces both creative expression and the exploration of ideas to create prototypes and solve
computational problems. Students create fatts that are personally relevant or beneficial to their community and beyond.
Students should develop artifacts in response to a task or a computational problem that demonstrate the performancéyred
and ease of implementation of an algorithm.
Practice(s)Creating Computational Artifacts: 5.2

Draft Arizona Computer Science Standards Page 78

Subconcept: Variables (V)

HS.AP.V.1

Use lists to simplify solutions, generalizing computational problems instead of repeatedly using simple variables.
Students should be able to identify common featuresuitiple segments of code and substitute a single segment that uses lig
(arrays) to account for the differences.

Practice(s)Developing and Using Abstractions: 4.1

Subconcept: Control (C)

HS.AP.C.1

Justify the selection of specific control structures and explain the benefits and drawbacks of choices made, when tradeoffs
involve readability and program performance.

Readability refers to how clear the program is to other programmers and can be improved through documentation. The dig
of performance is limited to a theoretical understanding of execution time; a quantitative analysis is not expected. Control
structures at this level may include conditional statements, loops, event handlers, and recursion.

Practice(s)Recognizing and Defilg Computational Problems: 5.2

HS.AP.C.2

Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by
using events to initiate instructions.

In this context, relevant computational detcts include programs, mobile apps, or web apps. Events can bmitis¢éed, such as g
button press, or systeiimitiated, such as a timer firin@t previous levels, students have learned to create and call procbdures
Here, students design procedarthat are called by events.
Practice(s)Creating Computational Artifacts: 5.2

Subconcept: Modularity (M)

HS.AP.M. | Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules,

1 and/or objects.
At this level, students should decompose complex problems into manageable subproblems that could potentially be solve(
programs or procedures that already exist.
Practice(s)Recognizing and Defining Computational Problems: 3.2

HS.AP.M. | Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated

2 programs.

Draft Arizona Computer Science Standards Page 79

Commented [BN65]:
level...

| didn’t see this listed at any previous

Computational artifacts can be created by combining and modifying existing artifacts or by developing new artifacts. Compg
prograns are designed as systems of interacting procedures, each with a specific role, coordinating for a common overall
[The focus at this Ievelllimderstanding a program as a system with relationships between procedures.
Practice(s)CreatingComputational Artifacts: 5.2

Subconcept: Program Development (PD)

HS.AP. Evaluate and refine computational artifacts to make them more usable and accessible.

PD.1 Testing and refinement is the deliberate and iterative process of improving a computatitiiaat. This process includes
debugging (identifying and fixing errors) and comparing actual outcomes to intended outcomes. Students should respond
changing needs and expectations of end users and improve the performance, reliability, usabBibiycessibility of artifacts. At
this level, students should work through a systematic process that includes feedback from broad audiences.
Practice(s)Testing and Refining Computational Artifacts: 6.3

HS.AP. Design and develop computational artifacts working in team roles using collaborative tools.

PD.2 Most software is developed in teams which can include pair programming or other collaborative structures. Team roles in
programming are alternating driver and navigator but could be neprecialized in larger teams. Students may choose to use
collaborative tools to aid their team, such as a version control system or project management interface.
Practice(s)Collaborating Around Computing: 2.1

HS.AP. Document design decisions using text, graphics, presentations, and/or demonstrations in the development of complex

PD.3 programs.

|Complex prograniare designed as systems of interacting modules, each with a specific role, coordinating for a common ov
purpose. These modules can be phres within a program; combinations of data and procedures; or independent, but
interrelated, programs.

Practice(s)Communicating About Computing: 7.2

Essential Concept: Impacts of Computing (IC)

Subconcept: Culture (C)

Draft Arizona Computer Science Standards Page 80

(Commented [BN66]:

I’d suggest including specific “students

may..” statements offering example tasks/activities.

Commented [BN67]:
activities listed

No “students should...” example tasks or

HS.IC.C.1

Evaluate the ways access to computing impacts personal, ethical, social, economic, and cultural practices.

Computing may improve, harm, or maintain practices. Equity deficits, such as minimal exposure to computing, acces®tg edl
and training opportunities, are relateto larger, systemic problems in society. Students should be able to evaluate the accessil
a product to a broad group of end users, such as people who lack access to broadband or who have various disabilities.
Practice(s)Fostering an Inclusiveomputing Culture: 1.2

HS.IC.C.2

Test and refine computational artifacts to reduce bias and equity deficits.

Biases could include incorrect assumptions developers have made about their user base or data. Students should bégin to i
potential biasduring the design process to maximize accessibility in product design and become aware of professionally accg
accessibility standards to evaluate computational artifacts for accessibility.

Practice(s)Fostering an Inclusive Computing Culture: 1.2

HS.IC.C.3

Demonstrate ways a given algorithm applies to problems across disciplines.

Computation can share features with disciplines such as art and music by algorithmically translating human intenticariifitetan
Students should be able to identify keeorld problems that span multiple disciplines, such as increasing bike safety with new h
technology, and that can be solved computationally.

Practice(s)Recognizing and Defining Computational Problems: 3.1

Subconcept: Social Interactions (SI)

HS.IC.SI.1

Analyze the impact of tools and methods for collaboration that increase connectivity.

Many aspects of society, especially careers, have been affected by the degree of communication afforded by computing. T¥
increased connectivity betweg@eople in different cultures and in different career fields has changed the nature and content o
careers. Students should explore different collaborative tools and methods used to solicit input from team members, glassim
others, such as padipation in online forums or local communities. For example, students could compare ways different socig
tools could help a team become more cohesive.

Practice(s)Collaborating Around Computing: 2.4

Subconcept: Safety, Law, and Ethics (SLE)

HS.IC.
SLE.1

Explain the beneficial and harmful effects that intellectual property laws can have on innovation.

Laws govern many aspects of computing, such as privacy, data, property, information, and identity. These laws can ltéale b
FYR KFENXYTdzZ STFSOG&r adzOK Fa SELISRAGAYI 2N RSt &Ay3tst RY
International differences in laws and ethics have implications for computing. For examples, laws that mandate the bleckiag

file-sharing websites may reduce online piracy but can restrict the right to access information. Students should bt aware

Draft Arizona Computer Science Standards Page 81

intellectual property laws and be able to explain how they are can be used to protect the interests of innovators optentiakyp
be misused.
Practice(s): Communicating About Computing: 7.3

HS.IC. Explain the privacy concerns related to the collection and generation of data through automated processes that may not be

SLE.2 evident to users.
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or gasibal
data collection deviceshis automated and novident collection can raise privacy concerns, such as social media sites minir|
account even when the user is not online.
Practice(s)Communicating About Computing: 7.2

HS.IC. Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.

SLE.3 Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International diffelanse

and ethics have implications for computing. Students might revéme studies or current events which present an ethical dilem|
when an individual's right to privacy is at odds with the safety, security, or wellbeing of a community.
Practice(s)Communicating About Computing: 7.3

Draft Arizona Computer Science Standards Page 82

Computer Science Glossary

The following glossary includes definitions of terms used in the statements in the K-12 Computer Science Framework. These terms are intended
to increase teacher understanding and decrease biased language.

Abstraction (process): The process of reducing complexity by focusing on the main idea. By hiding details irrelevant to the question at hand and
bringing together related and useful details, abstraction reduces complexity and allows one to focus on the problem. In elementary classrooms,
abstraction is hiding unnecessary details to make it easier to think about a problem.

(product): A new representation of a thing, a system, or a problem that helpfully reframes a problem by hiding details irrelevant to the question
at hand.

Pulling out specific differences to make one solution work for multiple problems.

Algorithm: A step-by-step process to complete a task. A list of steps to finish a task. A set of instructions that can be performed with or without a
computer.

For example, the collection of steps to make a peanut butter and jelly sandwich is an algorithm.

Lt\ppl: A type of application software designed to run on a mobile device, such as a smartphone or tablet computer (also known as a mobile
application).

Commented [BN68]: | think this has become the term for
desktop OS apps too...at least those found in the Windows and
Apple app stores.

Artifact: Anything created by a human. See “computational artifact” for the computer science-specific definition.

ASCII: (American Standard Code for Information Interchange) is the most common format for text files in computers and on the Internet. In an
ASClII file, each alphabetic, numeric, or special character is represented with a 7-bit binary number (a string of seven Os or 1s). 128 possible
characters are defined.

Automation: f‘l’o link }disparate systems and software in such a way that they become self-acting or self- regulating. Commented [BN69]: Implies a verb, but this is a noun.

Perhaps, “the proess of linking...”

Backup: The process of making copies of data or data files to use in the event the original data or data files are lost or destroyed.

Binary: LA method)of encoding data using two symbols (usually 1 and 0). To illustrate binary encoding, we can use any two symbols. ‘ Commented [BN70]: Hmm...binary is an adjective but is
described as a verb here.

Draft Arizona Computer Science Standards Page 83

A way of representing information using only two options.

Block-based programming language: Any programming language that lets users create programs by manipulating “blocks” or graphical
programing elements, rather than writing code using text. Examples include Code Studio, Scratch, and Swift. (Sometimes called visual coding,
drag and drop programming, or graphical programming blocks)

Bug: An error in a software program. It may cause a program to unexpectedly quit or behave in an unintended manner. The process of removing
errors (bugs) is called debugging.

Cloud: Remote servers that store data and are accessed from the Internet.

Code: Any set of instructions expressed in a programming language. One or more commands or algorithm(s) designed to be carried out by a
computer. See also: program

Command: An instruction for the computer. Many commands put together make up algorithms and computer programs.

Computational artifact: Anything created by a human using a computational thinking process and a computing device. A computational artifact
can be, but is not limited to, a program, image, audio, video, presentation, or web page file.

Computational thinking: Mental processes and strategies that include: decomposition, pattern matching, abstraction, algorithms (decomposing
problems into smaller, more manageable problems, finding repeating patterns, abstracting specific differences to make one solution work for
multiple problems, and creating step-by-step algorithms).

Computer science: Using the power of computers to solve problems.

Conditionals: Statements that only run under certain conditions or situations.

Data: Information. Often, quantities, characters, or symbols that are the inputs and outputs of computer programs.
Debugging: Finding and fixing errors in programs.

Decompose: Break a problem down into smaller pieces.

Decryption: The process of taking encoded or encrypted text or other data and converting it back into text that you or the computer can read
and understand.

Draft Arizona Computer Science Standards Page 84

Digital divide: the gulf between those who have ready access to computers and the Internet, and those who do not.
Encryption: The process of encoding messages or information in such a way that only authorized parties can read it.
Event: %n action that causes something to happen‘. (Code.org K-5)

Execution: The process of executing an instruction or instruction set.

For loop: A loop with a predetermined beginning, end, and increment (step interval) (Code.org K-5)

Function: A type of procedure or routine. Some programming languages make a distinction between a function, which returns a value, and a
procedure, which performs some operation, but does not return a value. Note: This definition differs from that used in math. A piece of code
that you can easily call over and over again. Functions are sometimes called ‘procedures.’

GPS: Abbreviation for "Global Positioning System." GPS is a satellite navigation system used to determine the ground position of an object.

Hacking: Appropriately applying ingenuity. Cleverly solving a programming problem. Using a computer to gain unauthorized access to data
within a system.

Hardware: The physical components that make up a computing system, computer, or computing device.
Hierarchy: An organizational structure in which items are ranked according to levels of importance.

HTTP: (Hypertext Transfer Protocol) is the set of rules for transferring files (text, graphic images, sound, video, and other multimedia files) on the
World Wide Web.

HTTPS: encrypts and decrypts user page requests as well as the pages that are returned by the Web server. The use of HTTPS protects against
eavesdropping and man-in-the-middle attacks.

Input: The signals or instructions sent to a computer.

Internet: The global collection of computer networks and their connections, all using shared protocols to communicate ‘[CAS—Prim] lA group of
computers and servers that are connected to each other.

Iterative: Involving the repeating of a process with the aim of approaching a desired goal, target, or result.

Draft Arizona Computer Science Standards Page 85

Commented [BN71]: This is an odd definition....quite vague
unless you understand the CS/programming context

Commented [BN72]: Thisis not useful for most teachers

Logic (Boolean): Boolean logic deals with the basic operations of truth values: AND, OR, NOT and combinations thereof.
Loop: A programming structure that repeats a sequence of instructions as long as a specific condition is true.

Looping: Repetition, using a loop. The action of doing something over and over again.

Lossless: data compression without loss of information.

Lossy: data compression in which unnecessary information is discarded.

Memory: Temporary storage used by computing devices.

Model: A representation of (some part of) a problem or a system. (Modeling: the act of creating a model). NOTE: This definition differs from that
used in science.

Network: A group of computing devices (personal computers, phones, servers, switches, routers, and so on) connected by cables or wireless
media for the exchange of information and resources. nested loop: A loop within a loop, an inner loop within the body of an outer one.

Operating system: Software that communicates with the hardware and allows other programs to run. An operating system (or “0S”) is
comprised of system software, or the fundamental files a computer needs to boot up and function. Every desktop computer, tablet, and
smartphone includes an operating system that provides basic functionality for the device.

Operation: An action, resulting from a single instruction, that changes the state of data.
Packets: Small chunks of information that have been carefully formed from larger chunks of information.

Pair programming: A technique in which two developers (or students) team together and work on one computer. The terms “driver” and
“navigator” are often used for the two roles. In a classroom setting, teachers often specify that students switch roles frequently, or within a
specific period of time.

Paradigm (programming): A theory or a group of ideas about how something should be done, made, or thought about. A philosophical or
theoretical framework of any kind. Common programming paradigms are object-oriented, functional, imperative, declarative, procedural, logic,
and symbolic.

Parallelism: The simultaneous execution on multiple processors of different parts of a program.

Draft Arizona Computer Science Standards Page 86

Parameter: A special kind of variable used in a procedure to refer to one of the pieces of data provided as input to the procedure. These pieces
of data are called arguments. An ordered list of parameters is usually included in the definition of a subroutine so each time the subroutine is
called, its arguments for that call can be assigned to the corresponding parameters. An extra piece of information that you pass to a function to
customize it for a specific need.

Pattern matching: Finding similarities between things.
Persistence: Trying again and again, even when something is very hard.
Piracy: The illegal copying, distribution, or use of software.

Procedure: An independent code module that fulfills some concrete task and is referenced within a larger body of source code. This kind of code
item can also be called a function or a subroutine. The fundamental role of a procedure is to offer a single point of reference for some small goal
or task that the developer or programmer can trigger by invoking the procedure itself. A procedure may also be referred to as a function,
subroutine, routine, method or subprogram.

Processor: The hardware within a computer or device that executes a program. The CPU (central processing unit) is often referred to as the
brain of a computer.

Program; programming (n): A set of instructions that the computer executes in order to achieve a particular objective. Program (v): To produce
a program by programming. An algorithm that has been coded into something that can be run by a machine. Programming: The craft of
analyzing problems and designing, writing, testing, and maintaining programs to solve them. The art of creating a program.

Protocol: The special set of rules that end points in a telecommunication connection use when they communicate. Protocols specify interactions
between the communicating entities.

Prototype: An early approximation of a final product or information system, often built for demonstration purposes.

Pseudocode: A detailed yet readable description of what a computer program or algorithm must do, expressed in a formally-styled natural
language rather than in a programming language.

RGB: (red, green, and blue) Refers to a system for representing the colors to be used on a computer display. Red, green, and blue can be
combined in various proportions to obtain any color in the visible spectrum.

Draft Arizona Computer Science Standards Page 87

Routing; router; routing: Establishing the path that data packets traverse from source to destination. A device or software that determines the
routing for a data packet.

Run program: Cause the computer to execute the commands you've written in your program.

Security: The protection against access to, or alteration of, computing resources, through the use of technology, processes, and training.
Servers: Computers that exist only to provide things to others.

Simulate: to imitate the operation of a real world process or system over time.

Simulation: Imitation of the operation of a real world process or system over time.

Software: Programs that run on a computer system, computer, or other computing device.

SMTP: the standard protocol for sending emails across the Internet. The communication between mail servers, by default, uses port 25. IMAP: a
mail protocol used for accessing email on a remote web server from a local client.

Storage: A place (usually a device) into which data can be entered, in which it can be held, and from which it can be retrieved at a later time. A
process through which digital data is saved within a data storage device by means of computing technology. Storage is a mechanism that enables
a computer to retain data, either temporarily or permanently.

String: A sequence of letters, numbers, and/or other symbols. A string might represent a name, address, or song title. Some functions commonly
associated with strings are length, concatenation, and substring.

Structure: A general term used in the framework to discuss the concept of encapsulation without specifying a particular paradigm.
Subroutine: A callable unit of code, a type of procedure.
Switch: A high-speed device that receives incoming data packets and redirects them to their destination on a local area network (LAN).

System: A collection of elements or components that work together for a common purpose. A collection of computing hardware and software
integrated for the purpose of accomplishing shared tasks.

Draft Arizona Computer Science Standards Page 88

Topology: The physical and logical configuration of a network; the arrangement of a network, including its nodes and connecting links. A logical
topology is how devices appear connected to the user. A physical topology is how they are actually interconnected with wires and cables.

Troubleshooting: A systematic approach to problem solving that is often used to find and resolve a problem, error, or fault within software or a
computer system.

User: A person for whom a hardware or software product is designed (as distinguished from the developers).

Variable: A symbolic name that is used to keep track of a value that can change while a program is running. Variables are not just used for
numbers. They can also hold text, including whole sentences (“strings”), or the logical values “true” or “false.” A variable has a data type and is

associated with a data storage location; its value is normally changed during the course of program execution. A placeholder for a piece of
information that can change.

Wearable computing: Miniature electronic devices that are worn under, with or on top of clothing. Note: This definition differs from that used in
math.

Draft Arizona Computer Science Standards Page 89

References:

Numerous existing sets of standards and standards-related documents have been used in developing the Arizona Standards for Computer

Science. These include:

1

1
f
il

The (Interim) CSTA K-12 Computer Science Standards, revised 2016 http://www.csteachers.org/?page=CSTA_Standards

The K-12 Computer Science Framework https://k12cs.org/

ISTE Standards, 2016: www.iste.org/standards/for-students#startstandards

College Board’s Computer Science Principles: https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-

principles-course-and-exam-description.pdf

Approved or draft standards from the following states:
0 Nevada: http://www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards Instructional Support/Nevada
Academic Standards/Comp Tech Standards/DRAFTNevadaK-12ComputerScienceStandards.pdf
0 Wisconsin: https://dpi.wi.gov/sites/default/files/imce/computer-science/ComputerScienceStandardsFINALADOPTED. pdf
0 South Carolina Computer Science and Digital Literacy Standards: https://ed.sc.gov/state-board/state-board-of-education/full-
state-board-meeting/full-board-sbe/may-2017/secondreading-attachment-proposed-sc-computer-science-amp-digital-literacy-
standards-pdf/

The following publication(s) were referenced:

0 Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2016). A model curriculum for K-12 computer science:

Report of the ACM K-12 task force curriculum committee (2nd ed.). New York, NY: Association for Computing Machinery.
The following website(s) were used for reference:

0 CAS-Prim: Computing at School. Computing in the national curriculum: A guide for primary teachers:
http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf

0 Code.org: Creative Commons License (CC BY-NC-SA 4.0): https://code.org/curriculum/docs/k-5/glossary

0 FOLDOC: Free On-Line Dictionary of Computing: http://foldoc.org/

0 MA-DLCS: Massachusetts Digital Literacy and Computer Science Standards, Glossary (Draft, December 2015):
http://www.doe.mass.edu/frameworks/dlcs.pdf

Draft Arizona Computer Science Standards Page 90

https://k12cs.org/
http://www.iste.org/standards/for-students#startstandards
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
http://www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards_Instructional_Support/Nevada_%20Academic_Standards/Comp_Tech_Standards/DRAFTNevadaK-12ComputerScienceStandards.pdf
http://www.doe.nv.gov/uploadedFiles/nde.doe.nv.gov/content/Standards_Instructional_Support/Nevada_%20Academic_Standards/Comp_Tech_Standards/DRAFTNevadaK-12ComputerScienceStandards.pdf
https://dpi.wi.gov/sites/default/files/imce/computer-science/ComputerScienceStandardsFINALADOPTED.pdf
https://ed.sc.gov/state-board/state-board-of-education/full-state-board-meeting/full-board-sbe/may-2017/secondreading-attachment-proposed-sc-computer-science-amp-digital-literacy-standards-pdf/
https://ed.sc.gov/state-board/state-board-of-education/full-state-board-meeting/full-board-sbe/may-2017/secondreading-attachment-proposed-sc-computer-science-amp-digital-literacy-standards-pdf/
https://ed.sc.gov/state-board/state-board-of-education/full-state-board-meeting/full-board-sbe/may-2017/secondreading-attachment-proposed-sc-computer-science-amp-digital-literacy-standards-pdf/
https://code.org/curriculum/docs/k-5/glossary
http://foldoc.org/
http://www.doe.mass.edu/frameworks/dlcs.pdf

0 NIST/DADS: National Institute of Science and Technology Dictionary of Algorithms and Data Structures:
https://xlinux.nist.gov/dads//

0 Techopedia: Techopedia: https://www.techopedia.com/dictionary

0 TechTarget: TechTarget Network: http://www.techtarget.com/network

0 TechTerms: Tech Terms Computer Dictionary: http://www.techterms.com

Draft Arizona Computer Science Standards Page 91

https://xlinux.nist.gov/dads/
https://www.techopedia.com/dictionary
http://www.techtarget.com/network
http://www.techterms.com/

